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Abstract

A theory of information structure is sketched
in which the meaning of atomic symbols is
grounded in the concepts they cause the recip-
ient to “cognize”. Composition of atomic sym-
bols of various kinds yields composite mean-
ings. The example of a particular type of dia-
gram is worked out in detail.

1 Introduction

Very often the best answer to a question is in a diagram,
a map, a photograph, or a video. For example, consider
the questions:

What is the Krebs cycle?
How has the average height of adult American

males varied over the last 100 years?
How did the Native Americans get to America?
What does Silvio Berlusconi look like?
When will the various tasks on this project be

completed?

The answer to the first should be a process diagram, the
second a graph, the third a map with routes indicated,
and the fourth a photograph. The answer to the last
might best be presented in a Gantt chart.

The aim of this paper is to present an ontology1 of
the structure of information that will support a variety
of statements about documents in various media, their
internal structure, and how they function in the world
at large, thereby providing a unified vocabulary for talk-
ing about entities that convey information. I begin by
sketching an approach to anchoring symbolic systems in
human cognition and discuss various levels of intention-
ality that occur. I then consider compositionality in dif-
ferent symbolic systems. This theory is then applied to
the specific case of diagrams as information-bearing ob-
jects, and a logical theory of Gantt charts is constructed
as an illustration.

1By “ontology” I mean a logical theory, i.e., a set of pred-
icates and functions, and a set of axioms involving the pred-
icates and functions that constrain their possible interpreta-
tions.

2 Grounding Symbols in Cognition

In this paper I will assume that we have a coherent no-
tion of causality, as in Hobbs (2001), as well as a theory
of commonsense psychology at least rich enough to ac-
count for perception, planning and intentional behavior,
and what I here call “cognizing”, that is, taking some
cognitive stance toward, such as belief, thinking of, won-
dering about, and so on. I will refer to the contents
of thoughts and beliefs as “concepts”, a general notion
that subsumes propositions (Gordon and Hobbs, 2003),
but also includes nonpropositional concepts like “dog”
and “near”, images, vague feelings of apprehension, and
so on. I will assume the “ontologically promiscuous”
notation of Hobbs (1985a), but for typographical conve-
nience, I will abuse it by using predications as arguments
in other predications, where a proper treatment would
reify the corresponding eventualities and use those as
arguments. Some of the inferences below are defeasible,
and thus the underlying logic must support a treatment
of defeasible inference. There are many frameworks for
this, e.g., McCarthy (1980) and Hobbs et al. (1993).
To minimize notational complexity, defeasibility is not
made explicit in the axioms in this paper.

The basic pattern that symbols rest on is the per-
ception of some external stimulus causing an agent to
cognize a concept.

(1) cause(perceive(a, x), cognize(a, c))

where a is an agent, x is some entity, and c is a concept.
x can be any kind of perceptible entity, including phys-
ical objects and physical properties, states, events and
processes, and, as we will see later, more abstract entities
as well. That is, we can perceive a ball, its roundness,
and the event of someone throwing it. Among the states
that can be perceived are absences. Seeing that some-
one’s car is not in his garage can cause me to believe he
is not at home. Silence, or absence of speech, can often
carry very significant meaning.

This pattern covers the case of a cloud reminding
someone of a dog, where there is no external causal con-
nection between the stimulus and the concept, and the
case of smoke making one think of fire, where there is
a causal connection, and the intermediate case of an as-



sociation that has been established by practice, as in a
dinner bell making one think of food.

Some concepts are tied in such a way to the entity
perceived that they can be called the “concept of” the
entity. We could introduce concept-of as a function map-
ping from the entity to the concept, but since the pred-
icate cognize always takes a concept as its second argu-
ment, it is simpler to build the coercion into the pred-
icate cognize. If e is an entity, cognize(a, e) says that
agent a cognizes the concept of e. The key relation be-
tween entities and their concepts is that perceiving the
entity causes the agent to cognize the concept of the en-
tity.

(2) cause(perceive(a, e), cognize(a, e))

It is important to note, however, that perception can
trigger many concepts and that not everything that is
cognized needs to be what is perceived. Perceiving a
bell can cause an agent to cognize food (as well as the
bell). This makes symbols possible.

Communication begins when another agent presents
an entity causing the first agent to perceive it.

(3) cause(present(b, x, a), perceive(a, x))

For an agent b to present something to a is for b to
cause it to be within the range of a’s perception, and
this causes a to perceive it.

The recipient agent a must of course be capable of
cognition. A greater range of sending agents b is possible.
A car that beeps when you don’t fasten your seatbelt is
an agent b that is presenting a signal x for the driver
to cognize. It is also possible for collectives to be the
sending agent, as in jointly authored documents such as
the Constitution of the United States. The agents may
or may not exhibit intentionality. Humans do, as do
organizations of humans, whereas simple artifacts merely
reflect the intentionality of their designer. Sufficiently
complex artifacts may exhibit intentionality.

Causality is defeasibly transitive, so Rules (1) and (3)
can be combined into the defeasible causal pattern for
appropriate c’s:

(4) cause(present(b, x, a), cognize(a, c))

That is, if b presents x to a, it will cause a to cognize
the appropriate concept c. For example, a car beeps and
that causes the driver to hear the beep; hearing the beep
causes the driver to remember to fasten her seatbelt. So
the beep reminds the driver to fasten her seat belt.

We will refer to the entity presented (x) as the symbol
and to the concept evoked (c) as its meaning.

3 Intention and Convention in
Communication

Presentation by an agent can involve several levels of in-
tentionality, and the perception can involve several lev-
els of recognition of intentionality. First, the presenta-
tion can be entirely unintentional, as, for example, when

someone conveys his nervousness by fidgeting or shaking
his leg. In an abductive account of intelligent agents, an
agent a interprets the environment by telling the most
plausible causal story for the observables in it. Here a
knows nervousness causes fidgeting and the most plausi-
ble causal story is that b’s fidgeting is because b is ner-
vous. When b says “ouch” and a infers that b feels pain,
the account is exactly the same.

When the presentation is intentional, the presenter’s
goal is to cause the perceiver to cognize something. The
presenter’s intention need not be recognized. For ex-
ample, I may keep the door to my office closed to lead
people to believe I am not in, without wanting them to
recognize my intention to communicate that.

Intention is recognized when it is part of an observer’s
explanation that an event occurs because the agent of
the event had the goal that it occur. Defeasibly, agents
do what they want to, when they can.2

(5) goal(g, b) ∧ executable(g, b) ⊃ cause(goal(g, b), g)

That is, if g is a goal of b’s and is executable by b (or
achievable by an executable action), then its being a
goal will cause it to actually occur. I won’t explicate
executable here, but it means that g is (achievable by)
an action of which b is the agent, and all the precondi-
tions for the action are satisfied.

When an observer a uses this causal rule, he is recog-
nizing the intention behind the occurrence of the event.

It is most common in human communication that the
intention is recognized. Agent b knows that presenting x
causes a to perceive x, which causes a to cognize concept
c. b has the goal that a cognize c. So that causes b to
present x. Agent a comes up with exactly this causal
explanation of b’s action of presentation, so not only does
a cognize c; a also recognizes b’s goal that a cognize c.

This recognition relies on agents’ knowing a defeasible
rule that says that

(6) goal(g1, b) ∧ cause(g2, g1) ⊃ goal(g2, b)

That is, if an agent b has a goal g1 and g2 tends to cause
g1, then b may have g2 as a goal as well.

In the case of communication, g1 is cognize(a, c) and
g2 is present(b, x, a). The recipient observes the event
of the presenting, uses axiom (5) to infer abductively
that it is intentional, and uses axiom (6) together with
schema (4) to recognize that b intends for a to cognize c.

We can get to full Gricean nonnatural meaning (Grice,
1989) by decomposing Rule (6) into two rules:

(7) goal(g1, b) ∧ cause(g2, g1) ⊃ goal(cause(g2, g1), b)
(8) goal(cause(g2, g1), b) ⊃ goal(g2, b)

That is, if an agent b has a goal g1 and g2 tends to cause
g1, then b may have as a goal that g2 cause g1. If an
agent b has as a goal that g2 cause g1, then b has the
goal g2.

2All axioms are universally quantified on the variables in
the antecedents of the highest-level implication.



When g1 is cognize(a, c) and g2 is present(b, x, a), a
uses axioms (7) and (8) to explain the presentation; then
a will recognize not only b’s intention to have a cognize c,
but also b’s intention that a do so by virtue of the causal
relation between b’s presentation of x and a’s cognizing
c. We not only want the effect to happen; we want it to
happen for the right reason.

In order for this sort of communication to work, it
must be mutually known between a and b that presenting
x causes cognizing c.

Communicative conventions (Lewis, 1969) are causal
rules of this sort that grow up in different groups. The
structure of a communicative convention is

(9) mb(s, cause(present(b, x, a), cognize(a, c)))
∧member(a, s) ∧ member(b, s)

for a specific x and a specific c. That is, a social group
s that agents a and b are members of mutually believe
the causal relation between presenting x and cognizing c.
For example, x might be a red flag with a white diagonal,
s might be the community of boaters, and c the concept
that there is a scuba diver below.

These communicative conventions can originate and
take hold in a group in many different ways. The culture
of a group consists in large part of a number of such rules.

Note that there is nothing particularly advanced about
the arbitrariness of the symbol x. That is already there
in the most primitive stage, in the connection between
the bell and the food.

This completes the sketch of how the meaning of
atomic symbols can be grounded in a theory of cognition:
in our scheme, x is a symbol that means or represents c
to a group of agents s. In an elaboration of Pease and
Niles (2001) we can express this as

(10) means(x, c, s)

I will leave out the third argument in the development
of the theory of diagrams below; the community is the
set of people able to understand the diagrams.

We next turn to how more complex symbolic objects
convey more complex meanings in different modalities.

4 Composition in Symbol Systems

An atomic symbol, i.e., one that does not have inter-
pretable parts, corresponds to some concept. Atomic
symbols can be composed in various ways, depending
on the type of symbol system, and the meaning of the
composite is determined by meaning of the parts and
the mode of composition. These composite elements can
then be components in larger structures, giving us sym-
bolic structures of arbitrary complexity.

Composition in symbol systems occurs when entities
x and y, meaning c1 and c2 respectively, are presented
with a relation R1 between them, where R1 conveys the
relation R2 in the target domain. Thus, we have three
causal relations.

(11) cause(present(b, x, a), cognize(a, c1))
(12) cause(present(b, y, a), cognize(a, c2))
(13) cause(present(b, R1(x, y), a),

cognize(a, R2(c1, c2)))

The relation R1(x, y) can be thought of as just an-
other entity in the symbol system, so it is subject to full
Gricean interpretation just as atomic symbols are, and
it can similarly be involved in the conventions of some
community.

With respect to the concepts invoked, we will confine
ourselves here to propositional concepts. The advantage
of having a flat notation in which anything can be rei-
fied is that when composite concepts are constructed, we
can view this as simply a conjunction of what is already
cognized with the new relations conveyed by the com-
position. The recipient of the message R1(x, y) cognizes
c1, c2, and R2(c1, c2).

Speech (and text as spoken) is single-channel and takes
place in time, so the only compositional relation possi-
ble is concatenation. Within sentences, the composi-
tion of smaller units into larger units conveys primar-
ily a predicate-argument relation between the meanings
of the components. Thus, when we concatenate “men”
and “work” into “men work”, we are indicating that the
referrent of “men” is an argument or role-filler in the
event denoted by “work”. This view of syntax as con-
veying predicate-argument (and modification) relations
through adjacency of constituents is elaborated in Hobbs
(1998), in which an extensive grammar of English is de-
veloped in a manner similar to the Head-driven Phrase
Structure Grammar of Pollard and Sag (1994).

In discourse beyond the sentence, concatenation gen-
erally conveys a coherence relation based on causality,
similarity, and figure-ground (Hobbs, 1985b).

In tables, the elements in individual cells refer to some
concept. The manner of composition is placement of
these cells in a vertical and horizontal arrangement with
other cells. Generally, the aggregate represents a set of
relations: The item in a cell that is not the first in its row
stands in some relation to the first element in the row.
The relation is the same for all elements in that column,
and is often explcitly labelled by a header at the top of
the column. For example, in a table of United States
presidents, we might have the year 1732 in one cell. The
label on the row may be “George Washington”, and the
label on the column “Birth date”. This spatial arrange-
ment then conveys the relation birthdate(GW, 1732).

A map is an interesting example of a complex visual
symbolic object. There are underlying fields, indicated
by colors, that represent regions of various political or
geologic types. Icons are overlaid on these fields in a way
that bears at least a topological relation to the reality
represented, and perhaps a geometric relation. Gener-
ally there is a mixture of topological and geometric cor-
respondences; the width of a road on a map is usually
not proportional to its width in reality. Information is
conveyed by the possible spatial relations of adjacency,



distance, and orientation. For example, labels naming
cities are placed near the icon representing the city.

In a process diagram, individual states may be rep-
resented by a set of icons standing in particular spatial
relationships to each other. Adjacent states may be con-
nected by arrows, the direction of the arrow indicating
temporal order (Wahlster et al., 1993; Pineda and Garza,
2000).

Documents (Power et al., 2003), Web sites, face-to-
face conversations (Atkinson and Heritage, 1994; All-
wood, 2002), lectures, and plays are more complex sym-
bolic entities, and they are similarly amenable to a com-
positional account in terms of adjacency relations among
the symbolic components and conjoined relations in the
meaning.

In Section 6 I develop more fully a theory of diagrams,
to illustrate the application of this theory of information
structure to a special case of substantial importance.

5 Manifestations
We have a strong tendency to group together classes of
symbolic entities that share the same property, especially
their content, and think of them as individuals in their
own right. It is probably better in an ontology of sym-
bolic entities to view these as first-class individuals that
themselves represent a particular content. Other sym-
bolic entities may be manifestations of these individu-
als. The predicate manifest is a transitive relation whose
principal property is that it preserves content.

(14) manifest(x1, x) ∧ means(x, c, s)
⊃ means(x1, c, s)

(This does not take into account translations, where the
s’s differ.)

Thus, to use the example of Pease and Niles (2001),
there is an entity called Hamlet. The performance of
Hamlet manifests Hamlet. The performance of Hamlet
in a particular season by a particular company manifests
that, and a performance on a particular night may man-
ifest that. A videotape of that particular performance
manifests the performance, and every copy of that video-
tape manifests the videotape. A similar story can be told
about the script of the play, a particular edition of the
script, and a particular physical book with that edition
of the script as its content.

Rule (14) is defeasible, because variations exist, lines
can be dropped, and printer’s errors occur. More pre-
cisely, if some proposition occurs in the content of one
symbolic entity then defeasibly it occurs in the content
of symbolic entities that manifest it.

6 A Theory of Diagrams

6.1 Background Theories
In developing a theory of diagrams (see also Glasgow et
al., 1995), we will need to rely on concepts from sev-
eral background theories, not all of which have been de-
scribed in published papers.

1. Set Theory: We need one relation and one function:

member(x, s): x is a member of the set s.
card(s) = n: The cardinality of set s is n.

2. Composite Entities: A composite entity x is some-
thing that has a set of components and a set of relations
among the components. We will need two relations:

componentOf(x, s): x is a component of s.
relationOf(r, s): r is a relation of s.

This depends on reifying relations (cf. Hobbs, 1985a).
3. Scales: One-dimensional diagram objects, intervals

of time, and, by extension, events are all scales and can
have beginnings and ends. It will be convenient to have
these concepts in both relational and functional form:

begins(x, s): x is the beginning of s.
ends(x, s): x is the end of s.
beginningOf(s) = x: x is the beginning of s.
endOf(s) = x: x is the end of s.

4. Strings: We assume there are strings of characters.
They are usually symbolic objects, so they can be the
first argument of the predicate means.

5. Time: In the development on Gantt charts, refer-
ence is made to concepts in OWL-Time (Hobbs and Pan,
2004). This ontology posits temporal entities (i.e., inter-
vals and instants), the beginnings and ends of intervals,
a before relation, Allen interval relations like intMeets,
and temporal aggregates, which are sets of nonoverlap-
ping, ordered temporal entities. It also handles durations
and clock and calendar terms. The three predicates we
need here are the following:

T imeLine(t): t is the infinite interval con-
taining all temporal entities.

atT ime(e, t): Event e occurs at instant t.
calInt(t): t is a calendar interval, e.g., a

calendar day or month.

In addition, we will need one predicate relating strings
to times:
dateStringFor(s, t): s is a string describing tem-

poral entity t.

6. Causality: The one predicate we need from a theory
of causality or processes (Hobbs, 2001) is enables:

enables(e1, e2): Event or condition e1 enables,
or is a prerequisite for, event
or condition e2.

7. For Gantt charts we need a simple ontology of
projects, with the following three predicates.

Project(p): p is a project.
taskIn(z, p): z is a task in project p.
milestoneIn(m, p): m is a milestone in p.

A project is a composite entity among whose components
are tasks and milestones, which are events. The project
and its parts can have names.

name(s, z): The string s is the name of z.



8. Space: The actual drawing of a diagram will in-
volve mapping the ontology of diagrams to an ontology
of space. Some portion of space will have to be chosen
as the ground. This will define the vertical and horizon-
tal directions and the above and rightOf relations. The
articulation between the theory of diagrams and the the-
ory of space would have to specify the kinds of spatial
regions that realize different kinds of diagram objects.

6.2 Diagram Objects
A diagram consists of various diagram objects placed
against a ground, where each diagram object has a mean-
ing. We can take the ground to be a planar surface,
which thus has points. Points can be in (pointIn) dia-
gram objects. Diagram objects can have labels placed
near them, and generally they indicate something about
the meaning. Diagram objects, points, frameworks,
meanings, and labels are discussed in turn, and then it
is shown how these can be used to define Gantt charts.

Diagram objects can be classified in terms of their di-
mensionality. In a spatial ontology in general, we would
have to specify both a dimension of the object and the
dimension of the embedding space, but in this theory
of diagrams, we will take our embedding space to be a
two-dimensional plane. Thus, there are three types of
diagram objects: 0DObject, 1DObject, 2DObject.3

(15) 0DObject(x) ⊃ DiagramObject(x)

Zero-dimensional diagram objects in diagrams are the
class of diagram objects that are treated as having zero
dimensions in the context of the diagram. Of course,
in a spatial ontology they would actually be small re-
gions generally with some symmetries. One type of zero-
dimensional diagram object is the diamond.

(16) Diamond(x) ⊃ 0DObject(x)

One-dimensional diagram objects include curves
(Curve). Three important kinds of curves are lines,
rays (half-lines), and line segments.

(17) LineSegment(x) ⊃ Curve(x)

A line has no beginning or end. A ray has a unique
beginning but no end. A line segment has both a unique
beginning and a unique end.

(18) LineSegment(x)
⊃ (∃ !p1, p2)[begins(p1, x) ∧ ends(p2, x)]

Beginnings and ends are points, in the sense described
below. It will be useful to have a term Linear that covers
all three types of linear diagram objects.

(19) Linear(x)
≡ [Line(x) ∨ Ray(x) ∨ LineSegment(x)]

3I will write only one axiom where there is a set of similar
axioms. The reader should have no difficulty reconstructing
the others.

A line segment “in” a linear diagram object is one that
is wholly contained in it.

(20) lineSegmentIn(x, y)
≡ LineSegment(x) ∧ Linear(y)
∧ (∀ p)[pointIn(p, x) ⊃ pointIn(p, y)]

Another kind of curve is an arrow from one point to
another.

(21) arrow(x, p1 , p2) ⊃ Curve(x)

Diagrams are composite entities whose components
are diagram objects.

(22) Diagram(d)∧ componentOf(x, d)
⊃ DiagramObject(x)

6.3 Points and the at Relation
A ground consists of points and any diagram object con-
sists of points, in some loose sense of “consist of”; that
is, for any ground and any diagram object there is a
corresponding set of points.

(23) [Ground(x) ∨ DiagramObject(x)]
⊃ (∃ s)(∀ p)[member(p, s) ⊃ pointIn(p, x)]

A zero-dimensional object has exactly one point in it.

(24) 0DObject(x) ⊃ (∃ !p)pointIn(p, x)

For convenience we will say that the single point in a
zero-dimensional object both begins and ends it. Points
are not diagram objects.

The beginnings and ends of linear objects are points.

(25) begins(p, x) ⊃ Linear(x) ∧ pointIn(p, x)

Points in the ground are partially ordered by an above
relation and a rightOf relation.

(26) above(p1, p2, g)
⊃ Ground(g) ∧ pointIn(p1, g) ∧ pointIn(p2, g)

A linear object is horizontal if no point in it is above any
other. Similarly, vertical.

(27) horizontal(x, g)
≡ Linear(x)
∧¬(∃ p1, p2)[pointIn(p1, x) ∧ pointIn(p1, x)

∧ above(p1, p2, g)]

A horizontal ray all of whose points are to the right of
its beginning is a rightward positive ray.

(28) [ray(x) ∧ horizontal(x, g) ∧ begins(p0, x)
∧ (∀ p)[pointIn(p, x)

⊃ [p = p0 ∨ rightOf(p, p0, g)]]
⊃ rtPositive(x, g)

Similarly, a vertical ray all of whose points are above its
beginning is a upwardly positive ray (upPositive). A
vertical ray all of whose points are below its beginning
is a downwardly positive ray (dnPositive).

A special kind of line segment needed for Gantt charts
is a horizontal bar.



(29) HBar(x)
⊃ (∃ g)[horizontal(x, g) ∧ LineSegment(x)]

When realized spatially, it will generally be thicker than
other line segments.

Diagrams are constructed by placing points in diagram
objects at points in the ground or in another diagram
object. The at relation expresses this.

(30) at(p1, p2)
⊃ (∃x1, x2)[pointIn(p1, x1) ∧ pointIn(p2, x2)

∧DiagramObject(x1)
∧ [Ground(x2) ∨ DiagramObject(x2)]
∧x1 6= x2]

The relation at can be extended to zero-dimensional ob-
jects in the obvious way. Typically, frameworks (see be-
low) will be placed with respect to some points in the
ground, and other diagram objects will be placed with
respect to the framework or other diagram objects.

The relations of a diagram as a composite entity in-
clude its at relations. To say this formally we can reify
the at relation. Thus, at′(r, p1, p2) means that r is the
at relation between p1 and p2. We can then say that r
is a member of the relations of the diagram.

(31) at′(r, p1, p2)∧ relationOf(r, d)

6.4 Frameworks
Many diagrams have an underlying framework with re-
spect to which diagram objects are then located, e.g.,
the lat-long framework on maps. A framework is a set
of objects in a particular relationship to each other.

(32) Framework(f)
⊃ (∃ s)(∀x)[member(x, s)

⊃ DiagramObject(x)∧ componentOf(x, f)]

One very important kind of framework is a coordinate
system. Here I will characterize only a rectilinear cooor-
dinate system.

(33) RCoordinateSystem(f) ⊃ Framework(f)
(34) RCoordinateSystem(f)

⊃ (∃ g)[Ground(g) ∧ groundFor(g, f)]
(35) RCoordinateSystem(f) ∧ groundFor(g, f)

⊃ (∃x, y)[xAxisOf(x, f)∧ yAxisOf(y, f)
∧ rtPositive(x, g)
∧ [upPositive(y, g) ∨ dnPositive(y, g)]]

Two points have the same x-coordinate if there is a ver-
tical line that contains both of them.

(36) sameX(p1, p2, f)
≡ (∃ l, g)[groundFor(g, f) ∧ vertical(l, g)

∧ pointIn(p1, l) ∧ pointIn(p2, l)]

Similarly for the same y-coordinate.
The x-value of a point is a point in the x-axis with the

same x-coordinate.

(37) x-value(p1, p, f)
≡ (∃x)[sameX(p1, p, f) ∧ pointIn(p1, x)

∧ xAxisOf(x, f)]

Similarly for the y-value.

6.5 Meanings
Associated with every object in a diagram is its meaning.
Meaning for diagrams is thus a function mapping dia-
gram objects into entities provided by some other ontol-
ogy. Meaning is conveyed by the predication means(x, c)
introduced above, where x is a diagram object. There
are no constraints on the second argument of means; it
just has to be an entity in some ontology.

(38) DiagramObject(x) ⊃ (∃ c)means(x, c)

The meanings of the at relations in a diagram will be
specified with axioms having the following form:

(39) at(x, y) ∧ p(x) ∧ q(y) ∧ means(x, a)
∧means(y, b)

⊃ r(a, b)

That is, if a p-type diagram object x is at a q-type di-
agram object y in a diagram, then if x means a and y
means b, then there is an r relation between a and b.

Axes in a coordinate system generally mean some set
in another ontology. That set may be unordered (a set
of tasks), discrete and linearly ordered (months), or con-
tinuous (time).

6.6 Labels
A label is a textual object that can be associated with
objects in a diagram. The two basic facts about labels
cannot be defined with precision without making refer-
ence to the cognition of the reader of the diagram.

1. A label is placed near the object it labels, in a way
that allows the reader of the diagram to uniquely
identify that object.

2. The content of the label as a string bears some rela-
tion to the meaning of the object that it labels; per-
ceiving the string causes one to think of the mean-
ing.

Specifying the first of these completely is a very hard
technical problem (Edmondson et al., 1997). For exam-
ple, often one cannot correctly associate the name of a
town with a dot on a map without doing the same for all
nearby towns, and associating a curve with the name of
a road often requires abductive inferences about short-
est paths and consistency of line thickness. Here I will
simply say that a label can be placed at an object, and
leave it to component-specific computation to determine
what at means in some context.

(40) label(l, x)
⊃ string(l) ∧ DiagramObject(x) ∧ at(l, x)



The second property of labels is also a difficult technical,
or even artistic, problem. But a very common subcase is
where the label is a name. The whole purpose of a name
is to cause one to think of the object when one perceives
the name, so it serves well for this property of labels.

(41) label(l, x) ⊃ (∃ c)[means(l, c) ∧ means(x, c)]

6.7 Gantt Charts
A Gantt chart g for a project p is a diagram that consists
of several types of components. It has a rectilinear co-
ordinate system f where the x-axis is rightward positive
and the y-axis is upward or downward positive. (The x-
axis can appear at the top or the bottom of the chart.)
The meaning of the x-axis is the time line or some other
periodic temporal aggregate, and the meaning of the y-
axis is a set of tasks and milestones in the project.

(42) GanttChart(g, p)
⊃ Diagram(g) ∧ Project(p)
∧ (∃ f, g1, x, y, t, s)[RCoordinateSystem(f)
∧ componentOf(f, g)
∧ groundFor(g1, f)∧ xAxisOf(x, f)
∧ rtPositive(x, g1)
∧means(x, t) ∧ T imeLine(t)
∧ yAxisOf(y, f)
∧ [upPositive(y, g1) ∨ dnPositive(y, g1)]
∧means(y, s)
∧ (∀ z)[member(z, s)

⊃ [taskIn(z, p)
∨milestoneIn(z, p)]]]

A Gantt chart has horizontal bars representing the in-
terval during which a task is executed.

(43) GanttChart(g, p) ∧ RCoordinateSystem(f)
∧ componentOf(f, g)

⊃ (∃ s)(∀ b)[member(b, s)
⊃ componentOf(b, g) ∧ HBar(b)
∧ (∃ r1, z, p1, t1, q2, t2)[y-value(r1, b, f)

∧means(r1, z) ∧ taskIn(z, p)
∧x-value(p1,beginningOf(b), f)
∧means(p1, t1) ∧ begins(t1, z)
∧x-value(q1,endOf(b), f)
∧means(q1, t2) ∧ ends(t2, z)]]

Because a task is an event, OWL-Time allows instants
as the beginnings and ends of tasks. Axiom (43) says
that a Gantt chart has a set of components which are
horizontal bars representing tasks and the beginning of
the bar represents the starting time of the task and the
end of the bar represents the finishing time of the task.

A similar axiom says that a Gantt chart has diamonds
representing milestones. Bars and diamonds are task
icons.

(44) taskIcon(x) ≡ [HBar(x) ∨ Diamond(x)]

A Gantt chart often has arrows going from the end of
one bar to the beginning of another, indicating the first
bar’s task is a prerequisite for the second. A diamond
can also be the source or target of an arrow.

(45) GanttChart(g, p) ∧ RCoordinateSystem(f)
∧ componentOf(f, g)

⊃ (∃ s)(∀ a)[member(a, s)
⊃ componentOf(a, g)
∧ (∃x, z1, p1, y, z2, p2)[arrow(a, p1 , p2)

∧ taskIcon(x)∧ componentOf(x, g)
∧means(x, z1) ∧ ends(p1, x)
∧ taskIcon(y)∧ componentOf(y, g)
∧means(y, z2) ∧ begins(p2, y)
∧ enables(z1, z2)]]

A bar in a Gantt chart may have labels for the date
at its beginning and end.

(46) GanttChart(g, p) ∧ HBar(b)
∧ComponentOf(b, g)

⊃ [(∃ s1)[(∀ l1)[member(l1, s1)
≡ (∃ p1, q1, t1)[begins(p1, b)

∧ label(l1, p1) ∧ x-value(q1, p1)
∧means(q1, t1)
∧ dateStringFor(l1, t1)]]

∧ card(s1) < 2]
∧ (∃ s2)[(∀ l2)[member(l2, s2)

≡ (∃ p2, q2, t2)[ends(p2, b)
∧ label(l2, p2) ∧ x-value(q2, p2)
∧means(q2, t2)
∧ dateStringFor(l2, t2)]]

∧ card(s2) < 2]]

The cardinality statement is a way of saying there is
either zero or one label. Similarly, a diamond in a Gantt
chart may have a label for a date.

Points on the y-axis of a Gantt chart can be labelled
with task names.

(47) [GanttChart(g, p) ∧ RCoordinateSystem(f)
∧ componentOf(f, g)∧ yAxisOf(y, f)]

⊃ (∃ s)[(∀ l)[member(l, s)
≡ (∃ p, z)[pointIn(p, y) ∧ label(l, p)

∧means(p, z) ∧ l = name(z)]]
∧ card(s) < 2]

Similarly, points in the x-axis can be labelled with
dates or times, and line segments in the x-axis of a Gantt
chart can be labelled with calendar intervals. Further
elaborations are possible. The labels can have internal
structure. For example, labels for subtasks may be in-
dented. Labels for time intervals may be broken into a
line for months, a line below for weeks, and so on.

7 Summary

Information structure is one of the most basic domains
in an ontology of the everyday world, along with such
domains as space and time. It should be anchored in an
ontology of commonsense psychology, as I have tried to
sketch here, and there should be an account of how com-
plex symbolic entities can be composed out of simpler
symbolic entities in various modalities and combinations
of modalities. An example has been given of how the



structure and meaning of a moderately complex type of
diagram can be specified.

A uniform theory for describing information-bearing
entities, such as the one presented here, will enable us to
describe complex relations among the elements of sym-
bolic entities that utilize multiple modalities.
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