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Abstract

In this paper, two families of merging op-
erators are considered: quota operators
and Gmin operators. Quota operators
rely on a simple idea: any possible world
is viewed as a model of the result of
the merging when it satisfies “sufficiently
many” bases from the given profile (a
multi-set of bases). Different interpreta-
tions of the “sufficiently many” give rise
to specific operators. Each Gmin opera-
tor is parameterized by a pseudo-distance
and each of them is intended to refine the
quota operators (i.e., to preserve more in-
formation). Quota and Gmin operators
are evaluated and compared along four
dimensions: rationality, computational
complexity, strategy-proofness, and dis-
criminating power. Those two fami-
lies are shown as interesting alterna-
tives to the formula-based merging oper-
ators (which selects some formulas in the
union of the bases).

1 Introduction

Merging operators aim at defining the beliefs (resp.
goals) of a group of agents from their individual
beliefs (resp. goals). The merging problem in the
propositional setting has been addressed in many
works, both from the artificial intelligence com-
munity and the database community [6; 23; 18;
19; 3; 4; 16]. It is also close to important is-
sues considered in Social Choice Theory [1; 21;
2].

Each operator is more or less suited to the many
merging scenarios which can be considered. Sub-
sequently, when facing an application for which
merging is required, a first difficulty is the choice
of a specific merging operator. Among the criteria
which can be used to make a clever choice, are the
following ones:

Rationality: A main requirement for adhering to
a merging method is that it offers the ex-
pected properties of what intuitively “merg-
ing” means. This calls for sets of rational-
ity postulates and this has been addressed in
several papers [23; 18; 16]. In the following,
we focus on the rationality postulates given
in [16], because they extend other proposals.
The more (w.r.t. set inclusion) postulates sat-
isfied the more rational the operator.

Computational Complexity: When one looks for
a merging operator for an autonomous multi-
agent system, a natural requirement is compu-
tational efficiency. In the worst case, merg-
ing is not a computationally easy task, and
query answering typically lies at the first or
even the second level of the polynomial hier-
archy. Computationally easier operators can
be obviously preferred to more complex ones.

Strategy-proofness: It is usually expected for
merging that agents report truthfully their be-
liefs/goals. For many applications, this as-
sumption can easily be made, in particular
when the agents have limited reasoning abil-
ities. However, when rational agents with full
inference power are considered, such an as-
sumption must be questioned: agents can be
tempted to misreport their beliefs/goals in or-
der to achieve a better merging result from
their point of view. Strategy-proof operators
must be preferred in such a case.

Discriminating Power: Because information is
typically hard to be acquired, another impor-
tant criterion to compare merging operators is
cautiousness: merging operators which pre-
serve only few information from the individ-
ual bases cannot be considered as valuable
ones. Thus, it is natural to prefer operators
leading to consistent merged bases that are as
strong as possible from an inferential point of
view.

As to rationality, one can look at [23; 18; 19;



13; 16; 14]. As to computational complexity, see
[14], and for a study of strategy-proofness of many
merging operators, a recent reference is [10] (see
also [20] for a related study concerning OCF merg-
ing operators). In light of those results, it appears
that no merging operator is a better performer than
any other operator with respect to the four crite-
ria. To be more precise model-based operators1 are
often computationally easier (inference is typically
Θp

2-complete or ∆p
2-complete) than formula-based

ones (inference can be Πp
2-complete) [14]. Model-

based operators also typically satisfy more rational-
ity postulates (see [16; 13]). The last two criteria
are much more difficult to satisfy for both families
of operators, even in very restricted cases. Actu-
ally, most of the merging operators identified so far
in the literature are not strategy-proof. Since the
four evaluation criteria appear as hard to be satis-
fied altogether, one cannot do better than searching
for good trade-offs.

We consider in this paper two families of propo-
sitional merging operators. The first one consists
of quota merging operators. Quota operators rely
on a simple idea: any possible world is viewed
as a model of the result of the merging when it
satisfies “sufficiently many” bases from the given
profile. “Sufficiently many” can mean either “at
least k” (any integer, absolute quota), or “at least
k%” (a relative quota), or finally “as many as possi-
ble”, and each interpretation gives rise to a specific
merging operator. We show that those operators
exhibit good logical properties, have low computa-
tional complexity and are strategy-proof. Since this
is achieved at the price of a potential lack of dis-
criminating power, we introduce a second family
of merging operators: Gmin operators. Each Gmin
operator is parameterized by a pseudo-distance and
each of them is intended to refine the quota opera-
tors (i.e., to preserve more information). Such op-
erators are both more rational and more discrim-
inating than quota merging operators. Unfortu-
nately, this improvement has to be paid by a higher
computational complexity, and more strategic vul-
nerabilities, but we think they offer an interesting
compromise nevertheless.

Note that aggregation functions close to the ones
on which quota and Gmin operators are based are
used to deal with relational structures that are more
complex than bipartitions of worlds (which are the
structures under consideration in standard propo-
sitional logic). For instance, they have been con-
sidered in the possibilistic logic setting and for
constraint satisfaction problems (see e.g. [9; 8;
11]). However, as far as we know, no systematic

1A distinction between model-based operators, which
select some interpretations that are the “closest” to the
bases, and formula-based ones, which pick some formu-
las in the union of the bases is often made [14].

study of quota and Gmin operators has been con-
ducted so far in the standard propositional setting.
Especially, they have never been evaluated with re-
spect to the four criteria we consider. This is where
the main contribution of the paper lies.

The rest of the paper is as follows. The next sec-
tion gives some notations and definitions. In Sec-
tion 3, quota operators are defined and their prop-
erties are studied. In Section 4, we define 4kmax ,
which is the operator obtained when optimizing the
value of the quota under the constraint that it does
not lead to an inconsistent merged base. In Section
5, 4GMIN operators are defined and their properties
are studied. Finally, we conclude this paper in Sec-
tion 6. Proofs are omitted due to space limitations.

2 Formal Preliminaries
We consider a propositional language L defined
from a finite set of propositional variables P and
the usual connectives, including > (the boolean
constant always true) and ⊥ (the boolean constant
always false).

An interpretation (or world) is a total function
from P to {0, 1}, denoted by a bit vector whenever
a strict total order on P is specified. The set of all
interpretations is noted W . An interpretation ω is a
model of a formula φ ∈ L if and only if it makes it
true in the usual truth functional way. [φ] denotes
the set of models of formula φ, i.e., [φ] = {ω ∈
W | ω |= φ}.

A base K denotes the set of beliefs/goals of an
agent, it is a finite and consistent set of proposi-
tional formulas, interpreted conjunctively. Unless
stated otherwise, we identify K with the conjunc-
tion of its elements.

A profile E denotes the group of agents that is
involved in the merging process. It is a multi-
set (bag) of belief/goal bases E = {K1, . . . , Kn}
(hence two agents are allowed to exhibit identi-
cal bases). We denote by

∧

E the conjunction of
bases of E, i.e.,

∧

E = K1 ∧ . . . ∧ Kn, and
∨

E
is the disjunction of the bases of E, i.e.,

∨

E =
K1∨. . .∨Kn. A profile E is said to be consistent if
and only if

∧

E is consistent. The multi-set union
is noted t, multi-set containment relation is noted
v. The cardinal of a finite set (or a finite multi-
set) A is noted #(A). We say that two profiles are
equivalent, noted E1 ≡ E2, if there exists a bijec-
tion f from E1 to E2 such that for every φ ∈ E1, φ
and f(φ) are logically equivalent.

The result of the merging of the bases of a profile
E, under the integrity constraints µ is the merged
base denoted 4µ(E). The integrity constraints
consist of a consistent formula the merged base
has to satisfy (it may represent some physical laws,
some norms, etc.).

We assume the reader familiar with the follow-
ing classes located at the first level of the poly-



nomial hierarchy (see [22] for an introduction to
complexity theory): BH2, ∆p

2 = PNP and Θp
2 =

∆p
2[O(log n)].

3 Quota Operators
Let us first define the quota operators.

Definition 1 Let k be an integer, E =
{K1, . . . , Kn} be a profile, and µ be a for-
mula. The k-quota merging operator, denoted 4k,
is defined in a model-theoretic way as:
[4k

µ(E)] =











{ω ∈ [µ] | ∀Ki ∈ E ω |= Ki}
if non empty,

{ω ∈ [µ] | #({Ki ∈ E | ω |= Ki}) ≥ k}
otherwise.

Essentially, this definition states that the models
of the result of the k-quota merging of profile E
under constraints µ are the models of µ which sat-
isfy at least k bases of E. When there is no conflict
for the merging, i.e.,

∧

E ∧ µ is consistent, the re-
sult of the merging is simply the conjunction of the
bases.

Example 1 Let us consider the following exam-
ple, with a profile E = {K1, K2, K3, K4},
such that [K1] = {100, 001, 101}, [K2] =
{001, 101}, [K3] = {100, 000}, and [K4] =
{111}, and the integrity constraints [µ] = W \
{010, 011}. With quota operators we get as a result
[41

µ(E)] = {000, 001, 100, 101, 111}, [42
µ(E)] =

{001, 100, 101} and [43
µ(E)] = ∅.

Here is an equivalent syntactical characterization
of [4k

µ(E)] (i.e., the result is directly given by a
formula) that is obtained from preferred consistent
subsets of E.2 Let us first define the following no-
tation:

pnkq = {C ⊆ {1, . . . , n} | #(C) = k}.

Then the following proposition gives a charac-
terization of quota operators :

Proposition 1 Let k be an integer, E =
{K1, . . . , Kn} be a profile, and µ be a formula.

4k
µ(E) ≡







∧

E ∧ µ if consistent,

(
∨

C∈pnkq

(
∧

j∈C

Kj)) ∧ µ otherwise.

Interestingly, the size of the formula equivalent
to [4k

µ(E)] given by Proposition 1 is polynomial
in |E| + |µ|. Hence, merged bases can be easily
compiled as propositional formulas.

2To be more precise, “subsets” stands here for multi-
set containment.

3.1 Logical Properties
Since we aim at investigating the logical properties
of our family of merging operators, a set of prop-
erties must first be considered as a base line. The
following set of postulates was pointed out in [15;
16]:

Definition 2 (IC merging operators) 4 is an IC
merging operator if and only if it satisfies the fol-
lowing postulates:

(IC0) 4µ(E) |= µ

(IC1) If µ is consistent, then 4µ(E) is consistent

(IC2) If
V

E is consistent with µ, then 4µ(E) ≡
V

E ∧ µ

(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then 4µ1
(E1) ≡

4µ2
(E2)

(IC4) If K1 |= µ and K2 |= µ, then 4µ({K1, K2}) ∧
K1 is consistent if and only if 4µ({K1, K2})∧K2

is consistent

(IC5) 4µ(E1) ∧4µ(E2) |= 4µ(E1 t E2)

(IC6) If 4µ(E1) ∧4µ(E2) is consistent,
then 4µ(E1 t E2) |= 4µ(E1) ∧4µ(E2)

(IC7) 4µ1
(E) ∧ µ2 |= 4µ1∧µ2

(E)

(IC8) If4µ1
(E)∧µ2 is consistent, then 4µ1∧µ2

(E) |=
4µ1

(E)

An IC merging operator is said to be an IC ma-
jority operator if it satisfies (Maj)
(Maj) ∃n 4µ (E1 t E2 t . . . t E2

| {z }

n

) |= 4µ(E2)

Quota merging operators exhibit good logical
properties.

Proposition 2 4k operators satisfy properties
(IC0), (IC2), (IC3), (IC4), (IC5), (IC7) and
(IC8). They do not satisfy (IC1), (IC6) and (Maj)
in general.

Only two properties of IC merging operators are
not satisfied: (IC1)3 since the result of the quota
merging can be inconsistent (see Example 1), and
(IC6).

Beside those general properties, some specific
additional properties, are satisfied by quota oper-
ators.

(Disj) If (
W

E) ∧ µ is consistent, then 4µ(E) |=
(
W

E) ∧ µ

3It is possible to make (IC1) satisfied by requir-
ing that, when no interpretation reaches the quota (i.e.,
satisfies at least k bases), the merged base is equiva-
lent to the integrity constraints formula. But this def-
inition leads to operators which do not satisfy (IC5).
This last property is very important from an aggrega-
tion point of view. It corresponds to a Pareto condi-
tion, that is considered as a minimal rationality require-
ment for aggregation in Social Choice Theory [1; 21;
2]. This is why we do not consider such an additional
family of operators any longer in the following.



Interestingly, the disjunction property (Disj) is
not shared by every IC majority merging opera-
tor [16], since most of them allow for “generating”
some new beliefs/goals from the ones in the bases
of the profile (some interpretations that do not sat-
isfy any of the bases can be chosen as models of
the merged base). When this behaviour is unex-
pected, formula-based merging operators – which
satisfy (Disj) – can be used, but such operators do
not satisfy many rationality postulates [13] (espe-
cially (IC3) is not satisfied) and are often hard from
a computational point of view. Quota operators (as
well as the other operators studied in this paper)
which also ensure (Disj) offer interesting alterna-
tives to formula-based operators in this respect.

Two other interesting postulates can be defined
for characterizing more precisely quota operators;
the first one is a weakening of (Maj), which is not
satisfied by every IC merging operator:

(Wmaj) If 4µ(E2) is consistent, then ∃n 4µ (E1 t
E2 t . . . t E2
| {z }

n

) ∧ 4µ(E2) is consistent

The second one shows the prominence of the
largest maximal consistent subsets of the profile;
let us define Maxconsµ(E) as {M | M v
E,

∧

M ∧ µ is consistent, and ∀M ′M @ M ′ v
E,

∧

M ′ ∧ µ is not consistent}:

(Card) If E1, E2 ∈ Maxconsµ(E), #(E1) ≤
#(E2), and 4µ(E) ∧ E1 is consistent, then
4µ(E) ∧ E2 is consistent

Proposition 3 4k operators satisfy properties
(Disj), (Card) and (Wmaj).

Note that it is not the case that every IC majority
merging operator satisfies (Card) (see Section 5).

3.2 Computational Complexity
Let 4 be a merging operator, we consider the fol-
lowing decision problem MERGE(4):

• Input : a triple 〈E, µ, α〉 where E =
{K1, . . . , Kn} is a profile, µ ∈ L is a formula,
and α ∈ L is a formula.

• Question : Does 4µ(E) |= α hold?

For quota merging operators, we can prove that:

Proposition 4 MERGE(4k) is BH(2)-complete.

This BH(2)-completeness result is obtained even
in the restricted case the query is a propositional
symbol and there is no integrity constraints (µ =
>). Note that this complexity class is located at a
low level of the boolean hierarchy. And that, obvi-
ously, the complexity of MERGE(4k) decreases to
coNP whenever k is not lower than the number of
bases of E (or under the restriction when

∧

E ∧ µ
is inconsistent).

3.3 Strategy-Proofness

Let us now investigate how robust quota opera-
tors are with respect to manipulation. Intuitively,
a merging operator is strategy-proof if and only
if, given the beliefs/goals of the other agents, re-
porting untruthful beliefs/goals does not enable an
agent to improve her satisfaction. A formal coun-
terpart of it is given in [10]:

Definition 3 (strategy-proofness) Let i be a sat-
isfaction index, i.e., a total function from L × L
to IR. A merging operator ∆ is strategy-proof for
i if and only if there is no integrity constraint µ,
no profile E = {K1, . . . , Kn}, no base K and
no base K ′ such that i(K, ∆µ(E t {K ′})) >
i(K, ∆µ(E t {K})).

Clearly, there are numerous different ways to de-
fine the satisfaction of an agent given a merged
base. While many ad hoc definitions can be con-
sidered, the following three indexes from [10] are
meaningful when no additional information are
available:

Definition 4 (indexes)

• idw
(K, K∆) =

{

1 if K ∧ K∆ is consistent,
0 otherwise.

• ids
(K, K∆) =

{

1 if K∆ |= K,
0 otherwise.

• ip(K, K∆) =
{

#([K]∩[K∆])
#([K∆]) if#([K∆]) 6= 0,

0 otherwise.

For the weak drastic index (idw
), the agent

is considered fully satisfied as soon as its be-
liefs/goals are consistent with the merged base. For
the strong drastic index (ids

), in order to be fully
satisfied, the agent must impose her beliefs/goals
to the whole group. The last index (“probabilistic
index” ip) is not a boolean one, leading to a more
gradual notion of satisfaction. The more compati-
ble the merged base with the agent’s base the more
satisfied the agent. The compatibility degree of K
with K∆ is the (normalized) number of models of
K that are models of K∆ as well.

Interestingly, we can prove that:

Proposition 5 Quota merging operators are
strategy-proof for ip, idw

and ids
.

This is quite noticeable since strategy-proof
merging operators are not numerous [10]. Strategy-
proofness is hard to achieve, as illustrated in Social
Choice Theory, for aggregation of preference re-
lations, by the Gibbard-Satterthwaite impossibility
theorem [12; 24; 21].



3.4 Absolute and Relative Quotas
In the definition of quota merging operators, an ab-
solute threshold, i.e., a fixed integer not depend-
ing on the number of bases in the profile, has been
used. On the other hand, it can prove also sensi-
ble to express quota in a relative manner, and to
define the models of the merged base as the inter-
pretations satisfying at least half (or the two third,
or the wanted ratio) of the initial bases. This tech-
nique is close to a well-known voting method used
in Social Choice Theory, namely voting in commit-
tees [5]. Let us call such operators k-ratio merging
operators (with 0 ≤ k ≤ 1), and let us note them
4k.

Example 2 (continued) [40.2
µ (E)] =

{001, 100, 101}, [40.3
µ (E)] = [40.5

µ (E)] =
{001, 100, 101}.

One can quickly figure out the close connections
between the two families of quota merging opera-
tors (the one based on absolute quota and the other
one on relative quota, or ratio). Each ratio merging
operator corresponds to a family of quota merging
operators (one for each possible cardinal of the pro-
file). And given a fixed cardinal, each (absolute)
quota merging operator corresponds to a family of
ratio merging operators.

Although the intuitive motivations of the two
definitions of those families look different, it turns
out that ratio merging operators have exactly the
same properties w.r.t. computational complexity
and strategy-proofness as (absolute) quota merg-
ing operators (though the proofs of some results are
different). Only some logical properties are differ-
ent.

Proposition 6 4k operators satisfy properties
(IC0), (IC2), (IC3), (IC4), (IC5), (IC7), (IC8),
(Maj), (Disj) and (Card). They do not satisfy
(IC1) and (IC6) in general.

4 4kmax Operator
Now, whatever the chosen quota is absolute or not,
an important point is the choice of its value. Let us
first observe that quota merging operators lead to a
sequence of merged bases that is monotonic w.r.t.
logical entailment:

Proposition 7 Let E be a profile, µ be a formula.
We have 4k+1

µ (E) |= 4k
µ(E) for all integers k.

Among the elements of this sequence, some
of them are of special interest. Thus, 40 gives
the conjunction of the bases (with the constraints)
when consistent and µ otherwise. It is called full
meet merging operator in [15]. 41 gives the con-
junction of the bases (with the constraints) when
consistent and the disjunction of the bases (with

the constraints) otherwise; it is closed to the ba-
sic merging operator [15], and is also definable as a
model-based merging operator obtained using the
drastic distance and max as aggregation function
[14]. The only difference is that 41 gives an in-
consistent result when the disjunction of the bases
is not consistent with the constraints, whilst the ba-
sic merging operator gives µ in this case.

Each time k is increased, the result of the merg-
ing is either the same as for the previous value of k
or is logically stronger. In our finite propositional
framework, the sequence (4k

µ(E))(k > 0) is obvi-
ously stationary from some stage. The value for
which it becomes stationary is not interesting in
itself, since the corresponding merged base is ei-
ther equivalent to the conjunction of the bases of
the profile (with the constraints), or to the inconsis-
tent base. But an interesting value of k is the one
leading to the last nontrivial merged base.

Definition 5 Let E = {K1, . . . , Kn} be a profile,
µ be a formula. Let kmax = max({i ≤ #(E) | 4i

µ

(E) 6|= ⊥}). 4kmax is defined in a model-theoretic
way as:
[4kmax

µ (E)] =










{ω ∈ [µ] | ∀Ki ∈ E ω |= Ki}
if non empty,

{ω ∈ [µ] | #({Ki ∈ E | ω |= Ki}) = kmax}
otherwise.

While very close to quota operators, the resulting
operator 4kmax is not a true quota operator since
the value of kmax is not given a priori, but depends
on E and µ.

Example 3 (continued)
[4kmax

µ (E)] = {001, 100, 101}.

At a first glance, 4kmax looks similar to
the formula-based operator ∆C4 which selects
cardinality-maximal subbases in the union of the
bases from the profile [13; 3; 4]; however, 4kmax

and ∆C4 are distinct; thus, while both operators
satisfy (Disj), 4kmax satisfies (IC3) and (Maj)
while ∆C4 satisfies none of them. Contrastingly,
4kmax belongs to two important families of model-
based merging operators, namely the 4Σ family
and the 4GMax family when the drastic distance
is used [17]. Accordingly, 4kmax has very good
logical properties:

Proposition 8 4kmax satisfies (IC0 - IC8), (Maj),
(Disj) and (Card).

Clearly enough, 4kmax is obtained by consider-
ing the problem of optimizing the quota (for “pure”
quota operators, k is given, so it does not need to
be computed). Unsurprisingly, the corresponding
inference problem is computationally harder than
the inference problem for quota operators (under
the standard assumptions of complexity theory):



Proposition 9 MERGE(4kmax) is Θp
2-complete.

Clearly enough, if kmax is computed during an
off-line pre-processing stage and becomes part of
the input afterwards, the complexity falls down to
coNP.

Now, as to strategy-proofness, the kmax operator
exhibits all the good properties of quota operators.

Proposition 10 4kmax is strategy-proof for the
three indexes ip, idw

and ids
.

5 4GMIN Operators
Starting from 4kmax , one could wonder whether it
is possible to constrain further the quota operators
so as to get operators with a higher discriminating
power, i.e,. allowing more inferences to be drawn.
In this section we provide a full family of such op-
erators.

In order to define a 4GMIN operator, the definition
of a pseudo-distance between interpretations is first
needed:

Definition 6 A pseudo-distance between interpre-
tations is a function d from W ×W to IN such that
for every ω1, ω2 ∈ W

• d(ω1, ω2) = d(ω2, ω1), and

• d(ω1, ω2) = 0 if and only if ω1 = ω2.

Any pseudo-distance between interpretations d
induces a “distance” between an interpretation
ω and a formula K given by d(ω, K) =
minω′|=K d(ω, ω′).

Examples of some such distances are the drastic
distance, noted dD , that gives 0 when ω1 = ω2 and
1 otherwise, or the Dalal distance [7], noted dH ,
that is the Hamming distance between interpreta-
tions.

Then 4d,GMIN
µ operators are defined as:

Definition 7 Let d be a pseudo-distance, µ an in-
tegrity constraint, E = {K1, . . . , Kn} a profile
and let ω be an interpretation. The “distance”
dd,Gmin(ω, E) is defined as the list of numbers
(d1, . . . , dn) obtained by sorting in increasing or-
der the set {d(ω, Ki) | Ki ∈ E}. The models of
4d,GMIN

µ (E) are the models of µ that are minimal
w.r.t. the lexicographic order induced by the natu-
ral order.

Example 4 (continued) [4dD,GMIN
µ (E)] =

{001, 100, 101}. [4dH ,GMIN
µ (E)] = {101}.

The computations are reported in Table 1. Each
Ki column gives the “distance” dH(ω, Ki) be-
tween the models of the integrity constraints and
Ki.

Clearly enough, 4kmax is a specific Gmin oper-
ator:

Proposition 11 4dD,GMIN = ∆kmax .

ω K1 K2 K3 K4 ddH,Gmin(ω,E)

000 1 1 0 3 (0,1,1,3)
001 0 0 1 2 (0,0,1,2)
100 0 1 0 2 (0,0,1,2)
101 0 0 1 1 (0,0,1,1)
110 1 2 1 1 (1,1,1,2)
111 1 1 2 0 (0,1,1,2)

Table 1: 4dH ,GMIN operator.

As far as discriminating power is concerned,
4GMIN operators are interesting operators, since
they refine the operator ∆kmax (so they refine also
every quota merging operator), as stated by the fol-
lowing property:

Proposition 12 For any pseudo-distance d, any in-
tegrity constraint µ and any profile E, we have

4d,GMIN
µ (E) |= ∆kmax

µ (E).

Furthermore, Gmin operators exhibit very good
logical properties:

Proposition 13 Let d be any pseudo-distance,
4d,GMIN satisfies (IC0 - IC8), (Maj) and (Disj). It
does not satisfy (Card) in general.

Thus, like formula-based merging operators,
4GMIN operators satisfy (Disj), but contrariwise to
formula-based merging operators, 4GMIN operators
are IC merging operators.

Let us now investigate the strategy-proofness is-
sue for the 4GMIN operators. In the general case,
strategy-proofness of quota merging operators is
lost:

Proposition 14 Let d be a pseudo-distance,
4d,GMIN is not strategy-proof for any index among
the three indexes idw

, ip and ids
.

We can guarantee strategy-proofness, but only in
some very specific cases:

Proposition 15

• 4d,GMIN is strategy-proof for ip, idw
and ids

if
the bases are complete (i.e. each base has a
unique model),

• 4d,GMIN is strategy-proof for the indexes idw

and ids
when #(E) = 2 and µ = >.

Finally, let us turn to the computational com-
plexity criterion. The next proposition is a direct
consequence of a result from [14]:

Proposition 16 Assume that the pseudo-distance d
of any pair of interpretations ω1 and ω2 can be
computed in time polynomial in |ω1| + |ω2|. Then
MERGE(4d,GMIN) is in ∆p

2.

For specific choices of d, more precise results
can be derived:



Proposition 17

• MERGE(4dD,GMIN) is Θp
2-complete.

• MERGE(4dH ,GMIN) is ∆p
2-complete.

As expected, the complexity of inference for
4d,GMIN operators is higher than the complexity of
inference for quota operators (under the usual as-
sumptions of complexity theory). However, it re-
mains at the first level of the polynomial hierar-
chy under reasonable requirements on the pseudo-
distance.

6 Conclusion

We have considered two families of merging oper-
ators, and investigated the properties of their oper-
ators with respect to four criteria: rationality, com-
putational complexity, strategy-proofness and dis-
crimating power. We claim that those four criteria
are the main dimensions along with propositional
merging operators have to be evaluated.

While no merging operators optimizing every
criteria exist, we claim that both quota and Gmin
operators are interesting trade-offs; even if they are
not fully rational and discriminating, quota oper-
ators exhibit “low complexity” and are strategy-
proof; on the other hand, Gmin operators are
slightly more complex and not strategy-proof in the
general case, but they are fully rational and much
less cautious. They also lead to merged bases im-
plying the disjunction of the bases from the con-
sidered profile, thus offering an interesting alterna-
tive to formula-based merging operators [3; 4; 13;
14], which are typically at least as hard from the
complexity point of view and satisfy less rational-
ity postulates.

This work calls for several perspectives. One
of them consists in determining to what extent the
four criteria used are (in)dependent. This would al-
low for drawing a multi-dimensional map on which
merging methods could be located.
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