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Abstract

The paper provides a uniform representation of
abductive reasoning in the logical framework of
causal inference relations. The representation cov-
ers in a single framework not only traditional, ‘clas-
sical’ forms of abduction, but also abductive rea-
soning in diagnosis, theories of actions and change,
and abductive logic programming.

1 Introduction
Abduction is a kind of reasoning from facts to their explana-
tions that is widely used now in many areas of AI, including
diagnosis, action theories, truth maintenance, knowledgeup-
date and logic programming. In this study we are going to
show that abduction can be given a uniform representation
in terms of production and causal inference relations from
[Bochman, 2004a]. Such inference relations provide a natural
generalization of classical logic that allows for nonmonotonic
reasoning. Accordingly, the suggested representation will
clarify the role of causal reasoning in abduction, as well as
the relation between abduction and nonmonotonic reasoning.

Causal considerations play an essential role in abduction.
They determine, in particular, the very choice of abducibles,
as well as the right form of descriptions and constraints (even
in classical first-order representations). As has been shown
already in[Darwiche and Pearl, 1994], system descriptions
that do not respect the natural causal order of things can pro-
duce inadequate predictions and explanations.

The intimate connection between causation and abduction
has become especially vivid in the so-called abductive ap-
proach to diagnosis (see, e.g.,[Cox and Pietrzykowski, 1987;
Poole, 1994; Konolige, 1994]). As has been acknowledged
in these studies, reasoning about causes and effects should
constitute a logical basis for diagnostic reasoning. Unfortu-
nately, the absence of an adequate logical formalization for
causal reasoning has relegated the latter to the role of an in-
formal heuristic background, with classical logic servingas
the representation language. This naturally raises the ques-
tion whether classical logic is adequate for all kinds of ab-
ductive reasoning. We will give below certain grounds for a
negative answer to this question.

In this study we suggest to base abductive reasoning en-
tirely on causal descriptions. As we will see, the resultingfor-

malism will subsume the ‘classical’ abductive reasoning. The
formalism will provide us, however, with additional represen-
tation capabilities that will encompass important alternative
forms of abduction, such as abductive reasoning in theories
of actions and change and abductive logic programming. As
a result, we obtain a generalized theory of abduction that cov-
ers in a single framework practically all kinds of abductive
reasoning used in AI.

Our basic language will be the classical propositional lan-
guage with the usual connectives{∧,∨,¬,→, t, f}. � will
denote the classical entailment. A Tarski consequence rela-
tion ⊢ in a classical language issupraclassicalif it subsumes
classical inference:�⊆⊢. By a conditional theorywe will
mean a set∆ of rulesA⊢B, whereA,B are classical propo-
sitions. ⊢∆ will denote the least supraclassical consequence
relation containing∆, andCn∆ its associated provability op-
erator. As can be verified,a ⊢∆ A holds iff A is derivable
from a by the rules from∆ and the classical entailment.

A consequence relation isclassical if it is supraclassical
and satisfies the Deduction rule: ifa,A ⊢ B, thena ⊢ A→B.
Classical consequence relation can be seen as a classical en-
tailment with some additional, nonlogical axioms; it. satisfies
already all the rules of classical inference.

2 Abductive systems and abductive semantics

We will describe first a formalization of standard abductive
reasoning. This formalization will serve as a basis for our
subsequent constructions and representations.

An abductive systemis a pairA = (Cn,A), whereCn is a
supraclassical consequence relation, whileA a distinguished
set of propositions calledabducibles. A set of abduciblesa ⊆
A is an explanationof a propositionA, if A ∈ Cn(a).

In applications, the consequence relationCn is usually
given indirectly by a generating conditional theory∆, in
which case the corresponding abductive system can be de-
fined as(Cn∆,A). Many abductive frameworks also impose
syntactic restrictions on the set of abduciblesA1. Thus,A is
often restricted to a set of special atoms (e.g., those builtfrom
abnormality predicatesab), or to the corresponding set of lit-
erals. The restriction of this kind is not essential, however.
Indeed, for any abducible propositionA we can introduce a

1Poole’s Theorist[Poole, 1988a] being a notable exception.



new abducible propositional atompA, and add the equiva-
lenceA ↔ pA to the underlying theory. The new abductive
system will have much the same properties.

An abductive system(Cn,A) will be calledclassicalif Cn
is a classical consequence relation. A classical abductivesys-
tem can be safely equated with a pair(Σ,A), whereΣ is a set
of classical propositions (the domain theory). An example of
such a system in diagnosis is[de Kleeret al., 1992], a descen-
dant of the consistency-based approach of[Reiter, 1987].

In abductive systems, acceptance of propositions depends
on existence of explanations, and consequently such systems
sanction not only forward inferences determined by the con-
sequence relation, but also backward inferences from facts
to their explanations, and combinations of both. All these
kinds of inference can be captured formally by considering
only theories ofCn that are generated by the abducibles. This
suggests the following notion:

Definition 2.1. Theabductive semanticsSA of an abductive
systemA is the set of theories{Cn(a) | a ⊆ A}.

By restricting the set of theories to theories generated by
abducibles, we obtain a semantic framework containing more
information. Generally speaking, all the information thatcan
be discerned from the abductive semantics of an abductive
system can be seen as abductively implied by the latter.

The information embodied in the abductive semantics can
be made explicit using the associated Scott consequence rela-
tion, defined as follows2: for any setsb, c of propositions,

b ⊢A c ≡ (∀a ⊆ A)(b ⊆ Cn(a) → c ∩ Cn(a) 6= ∅)

This consequence relation describes not only forward ex-
planatory relations, but also abductive inferences from propo-
sitions to their explanations. Speaking generally, it describes
the explanatory closure, or completion, of an abductive sys-
tem, and thereby captures abduction by deduction (cf.[Con-
soleet al., 1991; Konolige, 1992]).
Example.The following abductive system describes a variant
of the well-known Pearl’s example. Assume that an abductive
systemA is determined by the set∆ of rules

Rained ⊢ Grasswet Sprinkler ⊢ Grasswet

Rained ⊢ Streetwet,

and the set abduciblesRained, ¬Rained, Sprinkler,
¬Sprinkler, ¬Grassswet.

Since Rained and ¬Rained are abducibles,Rained
an independent (exogenous) parameter (and similarly for
Sprinkler). However, since only¬Grassswet is an ab-
ducible, non-wet grass does not require explanation, but wet
grass does. Thus, any theory ofSA that containsGrasswet
should contain eitherRained, or Sprinkler, and conse-
quently we have

Grasswet ⊢A Rained, Sprinkler.

Similarly,Streetwet implies in this sense both its only ex-
planationRained and a collateral effectGrasswet.

2A Tarski consequence relation of this kind has been used for the
same purposes in[Lobo and Uzćategui, 1997].

3 Production and causal inference
Production inference relations from[Bochman, 2004a] are
based on rules of the formA⇒B having an informal inter-
pretation “A produces, or explains, B”. Formally, a(regular)
production inference relationis a binary relation⇒ on the set
of classical propositions satisfying the following postulates:

(Strengthening) If A � B andB⇒C, thenA⇒C;

(Weakening) If A⇒B andB � C, thenA⇒C;

(And) If A⇒B andA⇒C, thenA⇒B ∧ C;

(Cut) If A⇒B andA ∧B⇒C, thenA⇒C;

(Truth) t⇒ t;

(Falsity) f⇒ f .

From a logical point of view, the most significant ‘omis-
sion’ of the above set is the absence of the reflexivity postu-
lateA⇒A. It is precisely this feature of production inference
that creates a possibility of nonmonotonic reasoning.

Production rules are extended to rules with sets of propo-
sitions in premises by stipulating that, for a setu of propo-
sitions,u⇒A hold if

∧
a⇒A for some finitea ⊆ u. C(u)

will denote the set of propositions explained byu:

C(u) = {A | u⇒A}

The production operatorC plays the same role as the usual
derivability operator for consequence relations. In particular,
it is a monotonic operator, that is,u ⊆ v implies C(u) ⊆
C(v). Moreover,C is a continuous operator.

A (monotonic) semantics of production inference relations
is described below.

Definition 3.1. • A bimodelis a pair of consistent deduc-
tively closed sets. Aproduction semanticsis a set of bi-
models. A production semanticsB is inclusive, if v ⊆ u,
for any bimodel(u, v) fromB.

• A production ruleA⇒B is valid in a production se-
manticsB if, for any bimodel(u, v) fromB, A ∈ u only
if B ∈ v.

Regular production relations are strongly complete for the
inclusive production semantics (see[Bochman, 2004a]).

By acausal theorywe will mean an arbitrary set of produc-
tion rules. For any causal theory∆, we will denote by⇒∆

the least production relation that includes∆. Clearly,⇒∆

is the set of all production rules that can be derived from∆
using the postulates for production relations.

3.1 Causal and quasi-classical inference
The following two special kinds of production inference rela-
tions will play an important role in what follows.

A production relation will be calledcausal, if it satisfies

(Or) If A⇒C andB⇒C, thenA ∨B⇒C.

andquasi-classical, if it is causal and satisfies

(Weak Deduction) If A⇒B, thent⇒(A→B).

Causal production relations allow for reasoning by cases,
and hence they can be seen as systems of objective reason-
ing about the world. Moreover, the relevant production rules



can already be interpreted ascausal rules, since they provide
a natural formal representation of ordinary causal assertions.
A useful fact about such inference relations is that any pro-
duction rule is reducible to a set of clausal rules

∧
li⇒

∨
lj ,

whereli, lj are classical literals. In addition, any ruleA⇒B
is equivalent to a pair of rulesA ∧ ¬B⇒ f andA ∧B⇒B.

The rulesA ∧B⇒B areexplanatory rules. Though logi-
cally trivial, they play an important explanatory role in causal
reasoning by saying that, ifA holds,B is self-explanatory
(and hence does not require explanation). On the other hand,
the ruleA ∧ ¬B⇒ f is aconstraintthat does not have an ex-
planatory content, but imposes a factual restrictionA→B on
the set of interpretations.

Quasi-classical production relations will be shown to char-
acterize classical abductive reasoning. Weak Deduction is
equivalent to the following postulate:

(CA) If ¬A⇒ f , thenA⇒A.

The postulate asserts that any constraintA is also a self-
explainable proposition. This partial collapse of the distinc-
tion between factual and explanatory information is actually
a first symptom of the limitations of classical reasoning in
representing abduction.

3.2 Nonmonotonic semantics
Production inference relations determine also a natural non-
monotonic semantics, and provide thereby a logical basis for
a particular form of nonmonotonic reasoning.

Definition 3.2. A general nonmonotonic semanticsof a pro-
duction inference relation is the set of all itsexact theories,
that is, setsu of propositions such thatu = C(u).

The general nonmonotonic semantics of a causal theory∆
will be identified with the nonmonotonic semantics of⇒∆.

An exact theory describes an informational state that is
closed with respect to the production rules and such that every
proposition in it isexplainedby other propositions accepted
in this state. Accordingly, they embody anexplanatory clo-
sure assumption, according to which any accepted proposi-
tion should also have explanation for its acceptance.

The general nonmonotonic semantics for causal theories
is indeed nonmonotonic in the sense that adding new rules to
the production relation may lead to a nonmonotonic change of
the associated semantics, and thereby of derived information.
This happens even though production rules themselves are
monotonic, since they satisfy Strengthening (the Antecedent).

Exact theories are fixed points of the production operator
C. Since the latter operator is monotonic, exact theories (and
hence the nonmonotonic semantics) always exist.

The causal semantics
For a causal interpretation of production rules, it is natural to
restrict the nonmonotonic semantics to worlds.

Definition 3.3. A causal nonmonotonic semanticsof a pro-
duction inference relation or a causal theory is the set of all
its exact worlds.

The causal nonmonotonic semantics of causal theories co-
incides with the semantics suggested in[McCain and Turner,
1997]. Moreover, it has been shown in[Bochman, 2003] that

causal inference relations constitute a maximal logic adequate
for this kind of nonmonotonic semantics.

McCain and Turner have established an important connec-
tion between the nonmonotonic semantics of a causal theory
and completion of the latter. A finite causal theory∆ is def-
inite, if it consists of rules of the formA⇒ l, wherel is a
literal or f . A completionof such a theory is the set of all
classical formulas

p↔
∨
{A | A⇒ p ∈ ∆} ¬p↔

∨
{A | A⇒¬p ∈ ∆}

for any propositional atomp, plus the set{¬A | A⇒ f ∈ ∆}.
Then the classical models of the completion precisely corre-
spond to exact worlds of∆ (see[Giunchigliaet al., 2004]).

The completion formulas embody two kinds of informa-
tion. As (forward) implications from right to left, they contain
the material implications corresponding to the causal rules
from ∆. In addition, left-to-right implications state that a lit-
eral belongs to the model only if one of its causes is also in
the model. These implications reflect the impact of causal
descriptions using classical logical means. Note, in particu-
lar, that explanatory rulesA ∧ l⇒ l produce trivial forward
implications, but contribute additional explanations foroc-
curring literals. In this sense, they play the same role asweak
causesfrom [Poole, 1994], namely rules that cannot be used
for prediction, but only for explanation of observations.

4 Production inference and abduction
In this section we will show that production inference pro-
vides a formal representation for abductive reasoning in ab-
ductive systems. To this end, we will extend the relevant no-
tion of explanation and say that an arbitrary setu of propo-
sitionsexplainsa propositionA in an abductive system, ifA
is explainable by the abducibles that are implied byu. The
following definition is based on viewing this notion of expla-
nation as a kind of production inference.

Definition 4.1. A production inference relation associated
with an abductive systemA is a production relation⇒A de-
termined by all bimodels of the form(u,Cn(u ∩ A)), where
u is a consistent theory ofCn.

We will assume that the set of abduciblesA of an abduc-
tive system is closed with respect to conjunctions, that is,if
A andB are abducibles, thenA ∧ B is also an abducible.
Then the above production inference relation admits a very
simple syntactic characterization. Namely,A⇒A B holds if
and only ifA implies some abducible that explainsB.

Lemma 4.1. If⇒A is a production inference relation associ-
ated with an abductive systemA, then

A⇒A B iff (∃C ∈ A)(C ∈ Cn(A) & B ∈ Cn(C))

As a consequence, we obtain that abducibles of an abduc-
tive system correspond precisely to ‘reflexive’ propositions of
the associated production relation.

Corollary 4.2. If ⇒A is a production inference relation as-
sociated with an abductive systemA, thenC⇒A C iff C is
Cn-equivalent to an abducible.



Due to this correspondence, reflexive (self-explanatory)
propositions of a production relation can be seen as ab-
ducibles, and hence we introduce

Definition 4.2. A propositionA will be called anabducible
of a production inference relation⇒, if A⇒A.

Production inference relations corresponding to abductive
systems form a special class described in the next definition.

Definition 4.3. A regular production relation will be called
abductiveif it satisfies

(Abduction) If B⇒C, then B⇒A⇒C, for some ab-
ducibleA.

Production inference in abductive production relations is
always mediated by abducibles. The following lemma de-
scribes the corresponding nonmonotonic semantics.

Lemma 4.3. Exact theories of an abductive production rela-
tion are precisely sets of propositions of the formC(u), where
u is a set of abducibles.

The next result establishes a correspondence between ab-
ductive production relations and abductive systems.

Theorem 4.4. A production inference relation is abductive if
and only if it is generated by an abductive system.

Finally, we will show that the abductive semantics of an
abductive system coincides with the nonmonotonic semantics
of the associated abductive production relation.

Theorem 4.5. If ⇒A is a production inference relation cor-
responding to an abductive systemA, then the abductive se-
mantics ofA coincides with the general nonmonotonic se-
mantics of⇒A.

Thus, abductive production relations under the general
nonmonotonic semantics provide a faithful representationof
abductive reasoning. Moreover, the representation gives a
logical definition to abducibles as propositions having a cer-
tain logical property (namely reflexivity).

As has been shown in[Bochman, 2004a], any production
relation includes a greatest abductive subrelation; moreover,
in many regular situations (e.g., when the production relation
is well-founded) the latter determines the same nonmonotonic
semantics. Now, since abductive production relations corre-
spond exactly to abductive systems, this means that the gen-
eral nonmonotonic semantics of a production relation is usu-
ally describable by some abductive system, and vice versa.

4.1 Abduction in literal causal theories
Now we will show that a certain well-known class of abduc-
tive systems can be directly interpreted as causal theories.
The description below will demonstrate, in effect, that the
causal reading of abductive systems has long been present
in the study of abduction and diagnosis.

By a literal inference rule we will mean a rule of the form
a ⊢ l, wherel is a propositional literal, anda a set of literals.
A conditional theory∆ will be calledliteral one, if it consists
only of literal rules. Finally, an abductive systemA = (∆,A)
will be called literal one, if∆ is a literal conditional theory,
and the set of abduciblesA is also a set of literals.

The above simplified abductive framework has been ex-
tensively studied in the theory of diagnosis under the name

‘causal theory’ (see, e.g.,[Consoleet al., 1991; Konolige,
1992; 1994; Poole, 1994]). The name has a different meaning
in our study, namely it denotes an arbitrary set of production
rules. It will be shown, however, that the these two notions of
a causal theory are closely related.

Recall that a set of rules can also be viewed as a causal the-
ory in our sense. Moreover, it has been shown earlier that ab-
ducibles can be incorporated into causal theories by accepting
corresponding explanatory rulesA⇒A. Accordingly, for an
abductive system(∆,A), we will introduce a causal theory
∆A which is the union of∆ (viewed as a set of production
rules) and the set{l⇒ l | l ∈ A}.

To begin with, the abductive semantics ofA is included in
the general nonmonotonic semantics of∆A.
Lemma 4.6. Any theoryCn∆(a), wherea ⊆ A, is an exact
theory of∆A.

However, the reverse inclusion does not hold, even in the
literal case, and it is instructive to clarify the reasons why this
happens. First, if the causal theory∆A is not well-founded, it
may have exact theories that are not generated by abducibles.
Second,∆A may create new abducibles of its own, if some
of the propositions happen to be inter-derivable. Taking a
simplest example, if we have that bothp ⊢ q andq ⊢ p belong
to ∆, then bothp andq will be abducibles of⇒∆A

.
Both the above reasons for a discrepancy will disappear,

however, if∆ is anacyclic theory. Actually, a restriction of
this kind has been used extensively in the literature - see, e.g.,
[Pearl, 1988; Consoleet al., 1991; Poole, 1994].

A dependency graphof a literal conditional theory∆ is
the directed graph with literals as nodes, in which the arcs are
pairs(l,m) of literals, for which∆ contains a rulel, a ⊢ m.
A conditional theory isacyclic, if its dependency graph does
not contain infinite descending paths. In what follows, we
will use, however, a weaker condition that will be sufficient
for our purposes.
Definition 4.4. A literal abductive system(∆,A) will be
called abductively well-founded, if any infinite descending
path in the dependency graph of∆ contains an abducible.

Clearly, any acyclic theory will also be abductively well-
founded. The following result shows that in this case the
causal theory∆A captures the ‘abductive content’ of the
source abductive system.
Theorem 4.7. If A is an abductively well-founded literal ab-
ductive system, then the abductive semantics ofA coincides
with the nonmonotonic semantics of∆A.

The above result shows that, from the perspective of ab-
ductive reasoning, literal conditional theories can be viewed
directly as causal theories.
Example. (continued) The following causal theory corre-
sponds to the (literal) conditional theory from the Pearl’sex-
ample, discussed earlier.

Rained⇒Grasswet Sprinkler⇒Grasswet

Rained⇒Streetwet

Rained⇒Rained ¬Rained⇒¬Rained

Sprinkler⇒Sprinkler ¬Sprinkler⇒¬Sprinkler

¬Grasswet⇒¬Grasswet ¬Streetwet⇒¬Streetwet



As follows from the above result, the general non-
monotonic semantics of this causal theory coincides with
the abductive semantics of the source abductive system, and
hence it determines the same abductive inferences.

5 Causal abduction
For ‘objective’ applications of abduction, such as diagnosis
and logic programming, we have to consider the stronger
causalnonmonotonic semantics of production inference. As
we mentioned, causal inference relations constitute an ade-
quate logic for this semantics. The corresponding kind of
abductive systems is described in the next definition.

Definition 5.1. An abductive systemA = (Cn,A) will be
calledA-disjunctiveif A is closed with respect to disjunc-
tions, andCn satisfies the following two conditions, for any
abduciblesA,A1 ∈ A, and arbitraryB,C:

• If B ⊢ A andC ⊢ A, thenB ∨ C ⊢ A;

• If A ⊢ B andA1 ⊢ B, thenA ∨A1 ⊢ B.3

A-disjunctive systems are precisely abductive systems that
generate causal production relations:

Theorem 5.1. An abductive production relation is causal iff
it is generated by anA-disjunctive abductive system.

In contrast, classical abductive reasoning corresponds in
this sense to quasi-classical production inference.

Theorem 5.2. An abductive production relation is quasi-
classical iff it is generated by a classical abductive system.

An important negative consequence from the above two
results is that classical abductive systems are already inad-
equate for reasoning with respect to the causal nonmonotonic
semantics. This conclusion is immediate from the fact that
causal inference relations constitute a maximal logic for the
latter, and hence any postulate added to causal inference will
extend the set of admissible models beyond exact worlds.

In fact, the distinction between causal and classical ab-
ductive reasoning has appeared as a distinction between
consistency-based and abductive approach to diagnosis. Tra-
ditionally, the difference between the two has been described
as a difference between finding the set of faults consistent
with observations versus finding faults that explain (that is,
entail) observations. Further studies have shown, however,
that a slight generalization of the consistency-based approach
provides a representation also for explaining observations
(see[de Kleeret al., 1992]). On the other hand, it has been
shown already in[Poole, 1988b] that that the consistency
based diagnosis can be represented via a completion of an
abductive theory. The real difference between the two ap-
proaches can be seen, however, as the difference between
a fully classical description of diagnosis systems (as in[de
Kleer et al., 1992]) and their causal description (see, e.g.,
[Konolige, 1994; Poole, 1994]). The earlier abductive ap-
proach of[Consoleet al., 1991] can also be viewed as im-
plicitly causal, since it used a completion of the conditional
base as way of solving the abductive task.

3Cf. the rule Ab-Or in[Lobo and Uzćategui, 1997].

The framework of causal inference also provides syntac-
tic means for differentiating between explaining observations
and finding models consistent with observations. Namely, for
an observationO, adding a constraint¬O⇒ f to a causal
theory amounts to reducing the causal nonmonotonic seman-
tics to exact worlds that explainO. But if we want only to
check consistency ofO with other data, we can add a rule
t⇒O. By the decomposition of causal rules, the latter is
equivalent to the combination of¬O⇒ f and the explanatory
ruleO⇒O that makesO an abducible. Accordingly, the ob-
servationO is exempted from the burden of explanation, and
hence is checked only for consistency. Note, however, that
precisely this distinction disappears in quasi-classicalinfer-
ence relations (see the postulate (CA) in Section 3.1).

5.1 Abduction in logic programming
Finally we will show that abduction in logic programming is
also representable as a special case of the causal framework.

The role of abduction in logic programming is twofold (see
[Kakaset al., 1998] for an overview). First of all, logic pro-
grams themselves are representable as abductive systems in
which negated atoms play the role of abducibles. In this
sense, logic programs are inherently abductive, and abduc-
tion provides a representation for negation as failure.

Abductive logic programsare defined as pairs(Π,A),
whereΠ is a logic program, andA a set abducible atoms.
A formalization of abductive reasoning in this setting is pro-
vided by thegeneralized stable semantics[Kakas and Man-
carella, 1990]. According to the latter, an abductive explana-
tion of a queryq is a subsetS of abducibles such that there
exists a stable model of the programΠ ∪ S that satisfiesq.

It has been shown in[Inoue and Sakama, 1998], however,
that abductive logic programs under the generalized stablese-
mantics are reducible to general disjunctive logic programs
under the stable semantics. The relevant transformation of
abductive programs can be obtained simply by adding toΠ
the program rulesp,not p←, for any abducible atomp from
A. This reduction has shown, in effect, that abductive pro-
grams have the same representation capabilities as general
logic programs.

Now, general logic programs has been shown in[Bochman,
2004b] to be representable as causal theories. The translation
for the stable semantics is obtained as follows. First, any pro-
gram rulec,not d ← a,not b is translated into a causal rule
d,¬b⇒∧a→∨c. Second, the resulting causal theory is aug-
mented with the causal version of the Closed World Assump-
tion stating that all negated atoms are abducibles:

Default Negation ¬p⇒¬p, for any propositional atomp.

The causal nonmonotonic semantics of the resulting causal
theory will correspond precisely to the stable semantics ofthe
source logic program. Moreover, unlike known embedding of
logic programs into other nonmonotonic formalisms, namely
default and autoepistemic logics, the causal interpretation of
logic programs turns out to be bi-directional in the sense that
any causal theory is reducible to a general logic program.

Combining the above representation results, we immedi-
ately obtain a causal interpretation of abductive logic pro-
grams. Fortunately, under the causal translation of program



rules, Inoue and Sakama’s rulesp,not p ← correspond to
causal rulesp⇒ p that make each suchp an abducible of the
resulting causal theory. Accordingly, for an abductive pro-
gram(Π,A), we define the causal theory∆Π,A as the union
tr(Π)∪A− ∪A+, wheretr(Π) is the set of causal rules cor-
responding to the rules ofΠ,A− is the set of rules¬p⇒¬p,
for all atomsp, andA+ is the set of rulesp⇒ p, for all p ∈ A.
Then we obtain
Theorem 5.3. The generalized stable semantics of an abduc-
tive program(Π,A) coincides with the causal nonmonotonic
semantics of∆Π,A.

Thus, abductive logic programs also correspond to causal
theories under the causal nonmonotonic semantics, subjectto
the Closed World Assumption.

6 Conclusions
It has been shown that the framework of production and
causal inference provides a uniform logical basis for abduc-
tive reasoning. The suggested causal representation of ab-
duction is syntax-independent in the sense that abducibles
are defined not as syntactically designated propositions, but
as propositions satisfying certain logical property in a causal
system, namely reflexivity (self-explanation)A⇒A.

The results of this study indicate also that causal reasoning
constitutes an essential ingredient, and even a pre-condition,
of abduction. A truly general formalization of abduction in
its current applications in AI can be achieved only by taking
into account the causal picture of a situation or a system.

It seems reasonable to suppose that the suggested causal
theory of abduction could be useful also in other applica-
tions of abduction in AI. Taking only one example, the causal
interpretation of abduction in logic programming naturally
provides a logical interpretation for a ‘mixed’ framework of
Poole’s Independent Choice Logic[Poole, 2000]. Without
going into details, the latter system is representable uniformly
as a causal theory in which atomic choices are abducibles.
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