
Specifying and Generating Preferred Plans

Meghyn Bienvenu and Sheila McIlraith
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada.�

meghyn,sheila � @cs.toronto.edu

Abstract

In this paper, we address the problem of specify-
ing and generating preferred plans using rich, qual-
itative user preferences. We propose a logical lan-
guage for specifying preferences over the evolution
of states and actions associated with a plan. We
provide a semantics for our first-order preference
language in the situation calculus and prove that
progression of our preference formulae preserves
this semantics. This leads to the development of
PPLAN, a bounded best-first search planner that
computes preferred plans. Our preference language
is amenable to integration with many existing plan-
ners, and beyond planning, can be used to support
arbitrary dynamical reasoning tasks.

1 Introduction
Research in automated planning has historically focused on
classical planning – generating a sequence of actions to
achieve a user-defined goal given a specification of a domain
and an initial state. Nevertheless, one need look no further
than the pervasive problem of travel planning to observe that
generating a plan is not the only challenge. In many real-
world settings, plans are plentiful, and it is the generation of
high-quality plans meeting users’ preferences and constraints
that presents the biggest challenge [9].

In this paper we examine the problem of preference-based
planning – generating a plan that not only achieves a user-
defined goal, but that also conforms, where possible, to a
user’s preferences over properties of the plan. To that end, we
propose a first-order language for specifying domain-specific,
qualitative user preferences. Our language is rich, supporting
preferences over the evolution of actions and states leading
to achievement of a goal. Our language harnesses much of
the expressive power of first-order and linear temporal logic.
We define the semantics of our preference language in the
situation calculus [11]. Nevertheless, nothing requires that
the planner be implemented using deductive plan synthesis in
the situation calculus. Indeed our planner PPLAN, a bounded
best-first search planner, is a forward-chaining planner, in the
spirit of TLPlan [1] and TALPlan [8], that exploits progres-
sion of preference formulae to more efficiently compute pre-

ferred plans. Experimental results with PPLAN illustrate the
efficacy of our best-first heuristic.

There is a tremendous body of research on preferences and
utility theory within the field of economics and related dis-
ciplines. Research on the specification of qualitative prefer-
ences has predominantly focused on static preferences (e.g.,
[4]) with a view towards preference elicitation. In a number
of cases, such limited preference languages render states in-
comparable. Recent work extends the expressiveness of such
languages somewhat (e.g., [5]). In the area of dynamic pref-
erences, there are several recent and notable pieces of work.
Son and Pontelli [13] have developed a propositional lan-
guage for planning with preferences together with an imple-
mentation using answer-set programming. Indeed we lever-
age their preference language PP in our work, contrasting
the two in subsequent sections. Also notable is the work of
Delgrande et al. [6], who have developed a framework for
characterizing preferences and properties of preference-based
planning. Rossi and colleagues (e.g., [12]) exploit their work
on soft constraints to develop temporal constraints for reason-
ing in temporal domains, sometimes with uncertainty. Their
qualitative preferences are less expressive than ours, but their
computational framework is more general. Finally research
on decision-theoretic planning and MDPs also addresses the
general problem of generating preferred plans [10]. Never-
theless, the elicitation of preferences in terms of Markovian
numeric utilities makes these approaches less applicable to
the types of preferences we are interested in capturing.

Our work is distinguished for a number of reasons. Our
preference specification language is first-order, and thus more
expressive. We provide compelling means of expressing rel-
ative importance of different preferences, thus reducing the
incomparability of potential plans. By appealing to the sit-
uation calculus, where different plan trajectories are simply
different branches (situations) within a single model of the
domain, we are able to talk about the relative merits of evolv-
ing plans within the language, rather than characterizing pref-
erences in terms of preferred models. Finally, our implemen-
tation of a preference-based planning system uses a forward
chaining planner, making it conducive to online interleaved
planning and execution, and to mixed-initiative planning with
preferences.

In Section 2 we provide a brief review of the situation cal-
culus. In Section 3, we describe the syntax and semantics

of our preference language for planning, illustrating its use
through a motivating example which is carried through the
paper. With the semantics of our preferences in hand, we re-
turn to the general problem of planning with preferences in
Section 4, proving that progression preserves the semantics
of our preferences. In Section 5, we describe our implemen-
tation of PPLAN, a bounded best-first forward planner that
plans with preferences, and prove the correctness of our algo-
rithm. We conclude with a summary.

2 Preliminaries

The situation calculus is a logical language for specifying and
reasoning about dynamical systems [11]. In the situation cal-
culus, the state of the world is expressed in terms of func-
tions and relations (fluents) relativized to a particular situa-
tion � , e.g.,

�������� �
	 . In this paper, we distinguish between the
set of fluent predicates � and the set of non-fluent predicates�

representing properties that do not change over time. A
situation � is a history of the primitive actions ���� , per-
formed from an initial, distinguished situation ��� . The func-
tion ��� � � ��	 maps a situation and an action into a new situa-
tion. The theory induces a tree of situations rooted at � � .

A basic action theory in the situation calculus � comprises
four domain-independent foundational axioms and a set of
domain-dependent axioms. The foundational axioms � de-
fine the situations, their branching structure, and the situation
predecessor relation � . ������� states that situation � precedes
situation � � in the situation tree. � includes a second-order
induction axiom. The domain-dependent axioms are strictly
first-order and are of the following form: successor state axioms �"!#! , one for every fluent $&%�� ,
which capture the effects of actions on the truth value of $. action precondition axioms �"')(, one for every action * in
the domain. These define the fluent +,�-��� � � ��	 , the conditions
underwhich it’s possible to execute an action in situation � . axioms �.!�/ describing the initial situation. unique names axioms for actions �.0-12' .

Details of the form of these axioms can be found in [11].
Following convention and to enhance readability, we will
generally refer to fluents in situation-suppressed form, e.g.,
�3 �54 �
687
	 rather than �3 �54 �96:7 � ��	 .

A planning problem ; is a tuple <5�>=@?BA where � is a basic
action theory and ? is a goal formula, representing properties
that must hold in the final situation. In the situation calculus,
planning is characterized as deductive plan synthesis. Given
a planning problem <5�>=@?BA , the task is to determine a situa-
tion �.CD��� � 2E � � ��� � 2E2F�G �IHIHIHI� ��� � JG � � � 	K	K	K	 1, i.e., a sequence
of actions from � � , such that:LNM C �PO �
	 H 7 � 7�Q)RS3TVUIWX7 � ��	JY:Z � ��	
where 7 � 7�Q@R[3TVU)WX7 � �
	J\I]5^C �`_ � �I�a	 H ��� � � ���X	cbd�,ef+,�-��� � � �I�`	 .

We refer to this situation �gCh��� �i� � ����	 as the plan trajec-
tory, and the sequence of actions

�gCjkGKSl HmHmH 2E as the associ-
ated plan. The length of this plan is n . A planning problem
<a�o=@?BA is solvable if it has at least one plan. It is p -solvable
if it has a plan of length p or less.

1Which we abbreviate to ��� �Kq JG ��HIHIHI� SE�r � � � 	 , or ��� �i� � � � 	 .

3 Preference Specification

In this section we describe the syntax and semantics of our
first-order preference language. We illustrate the concepts in
this paper in terms of the following motivating example.

The Dinner Example: It’s dinner time, and Claire
is tired and hungry. Her goal is to be at home with
her hunger sated. There are three possible ways for
Claire to get food: she can cook something at home,
order in take-out food, or go to a restaurant. To
cook a meal, Claire needs to know how to make the
meal and she must have the necessary ingredients,
which might require a trip to the grocery store. She
also needs a clean kitchen in which to prepare her
meal. Ordering take-out is much simpler; she only
has to order and eat the meal. Going to a restaurant
requires getting to the restaurant, ordering, eating,
and then returning home.

This example is easily encoded in any number of planning
systems, and given a specification of Claire’s initial state, a
planner could generate numerous plans that achieve Claire’s
goal. Nevertheless, like many of us, Claire has certain pref-
erences concerning where and what she eats that make some
plans better than others. It is the definition of these prefer-
ences and the generation of these preferred plans that is the
focus of this paper.

3.1 A First-Order Preference Language

In this section we present the syntax of a first-order language
for expressing preferences about dynamical systems. Our
preference language modifies and extends the preference lan-
guage PP recently proposed by Son and Pontelli [13]. Fol-
lowing their work, we provide a hierarchy of preference for-
mulae comprising basic desire formulae, atomic preference
formulae, and general preference formulae, as defined below.
Subsequent reference to a preference formula refers to a gen-
eral preference formula, which encompasses both basic desire
formulae and atomic preference formulae.

Definition 1 (Basic Desire Formula (BDF)). A basic desire
formula is a sentence drawn from the smallest set s where:

1. tvuxw
2. yzuxw
3. If {8�:t , then final

� {J	|�:w
4. If .�:� , then occ

� [c�"w
5. If } , }~G , and }�l are in w , then so too are ��� , ��G�Y"��l , �|G��� l , �PO � 	K} ,

�`_ � 	K} , next(�), always(�), eventually(�), and
until(�|G , ��l)

BDFs establish preferred situations. By combining BDFs us-
ing boolean and temporal connectives, we are able to express
a wide variety of properties of situations. We illustrate their

use with some sample BDFs from our motivating example.
4 S�����������J3 � � �
	#��S	#Y���� �� ���8���� ������S7 � �
	#��S	 (P1)�PO � 	 H 4 S�����������J3K� � � 	#Y���� �� ���8���� ������S7 � � 	 (P2)

final
� ���a3TQ 4 7����,WX7����	 (P3)�PO � 	 H eventually

�
occ

� Q)�
��� � � 	K	K	 (P4)�PO � 	 H �PO�� 	 H eventually
�
occ

� ���9�V7���� ��27��9R[3 � ��� � 	K	K	 (P5)�PO � 	 H �PO�� 	 H eventually
�
occ

� ���9�V7����,7
�I3 VR��9��J3 � ��� � 	K	K	 (P6)

always
� � �K�PO � 	 �PO�� 	 occ

� ����� �V7 � ��� � 	K	�Y!� �
�"� ��#� ���S	K	 (P7)

always
� � �K�PO � 	 H occ

� 7��3 � � 	K	JY.Q 4 �$�k7
��7 � � 	K	K	 (P8)

The first BDF, P1, states that in the initial situation Claire has
the ingredients and the know-how to cook spaghetti. P2 is
more general, expressing that in the initial situation Claire has
the ingredients to make something she knows how to make.
Observe that fluent formulae that are not inside temporal con-
nectives refer only to the initial situation. P3 states that in the
final situation the kitchen is clean. P4 - P6 tell us respectively
that at some point in time Claire cooked something, ordered
something from take-out, or ordered something at a restau-
rant. The BDF P7 tells us that at no point does Claire drive
while it is snowing. Finally P8 tells us that Claire never eats
any chinese food.

While BDFs alone enable us to express many interesting
preferences, we cannot express preferences between alterna-
tives. For example, we cannot say that Claire prefers cooking
to ordering take-out. To do so, we define Atomic Preference
Formulae, following the definition in [13].

Definition 2 (Atomic Preference Formula). An atomic
preference formula is a formula %'&)(%�*+(,-,-,.(%|1 ,
where n0/21 and each %43 is a basic desire formula. When
n65)1 , atomic preference formulae correspond to BDFs.

An atomic preference formula expresses a preference over
alternatives. For example, Claire can express her preference
over what to eat (pizza, followed by spaghetti, followed by
crêpes) using P92.

occ � � 7��3 � 	��$7�79[K	�8 occ� � 7�V3 � �
	#��S	K	�8 occ� � 7��3 � Q9��:7;	#79��	K	 (P9)

If Claire is in a hurry, tired, or very hungry, she may be more
concerned about how long she will have to wait for her meal:

+=<>8 +=?�Y"+A@B8 +>C>8 ��+=? Y"+A@ (P10)

This says that Claire first choice is take-out, followed by
cooking if she has the ingredients for something she knows
how to make, followed by going to a restaurant, and lastly
cooking when it requires a trip to the grocery store.

Again, an atomic preference represents a preference over
alternatives, %'3 . That means we are only trying to satisfy one
of the BDFs %43 , and we would like to satisfy the BDF with
lowest index possible. Consequently, if Claire eats pizza and
crêpes, this is no better nor worse with respect to P9 than sit-
uations in which Claire eats only pizza, and it is strictly better
than situations in which she just eats crêpes. Also note that
there is always implicitly one last option, which is to satisfy
none of the % 3 , and this option is the least preferred.

2For legibility, we abbreviate eventually
�
occ

� }�	K	 by occ � � }�	 ,
and we refer to the preference formulae by their labels.

Atomic preference formulae contribute significantly to the
expressivity of our preference language, but we still lack a
way to combine atomic preferences together. Our third and
final class of preference formulae will provide us with several
useful methods for combining preference formulae.

Definition 3 (General Preference Formula). A formula D
is a general preference formula if one of the following holds:

E D is an atomic preference formula
E D is FHG�I , where F is a basic desire formula and I is a

general preference formula [Conditional]
E D+5KJ�I , for I a general preference formula [Negation]
E D is one of

– I &ML I *NL ,-,O, L I 1 [General And]
– IP&RQ�I.*SQT,O,-,PQ4Ig1 [General Or]
– IP&>URI.*TU+,O,-,�URIg1 [Lex Order]

– IP&WVL I.*!VL ,O,-,XVL Ig1 [Ordered And]

where nS/ZY and each I 3 is a general preference formula.

Here are some example general preference formulae:

+=?P[+A@ � +X\�\�]i+>^ � +X\�?9	
+>^`_o+X\�a � +X\�b 	 +>^ M +X\�a � +X\�@-	
+>^Tc +X\�a � +X\�< 	 +>^ �_>+X\�a � +X\�C 	

The preference P11 states that if Claire initially has the in-
gredients for something she can make, then she should cook
something. A negation preference J�D does the opposite of its
component preference D . In the case of P12, that would mean
Claire’s most preferred option is eating something other than
pizza, crêpes, or spaghetti, and otherwise she prefers crêpes to
spaghetti to pizza. The remaining preferences show the vari-
ous ways we can combine Claire’s food and time preferences.
P13 is used when Claire wants both her food and time prefer-
ences to be satisfied as much as possible. P14 can be used if
she would be content if either of the two were satisfied. P15
tells us that while Claire cares about both her preferences,
her food preference is more important. Finally, P16 means
that she wants to satisfy both preferences as much as possi-
ble, like P13, but if two solutions are “tied”, she prefers the
solution which is better with respect to the food preference
P9. Preferences of this type allow us to lessen incomparabil-
ity even when we have many preferences of (almost) equal
importance.

This concludes our description of the syntax of our pref-
erence language. Our language extends and modifies the PP
language recently proposed by Son and Pontelli [13]. Quan-
tifiers, variables, and non-fluent relations have been added to
BDFs. In PP it is impossible to talk about arbitrary action or
fluent arguments or their properties, and it is difficult or even
impossible to express the kinds of preferences given above.
Further, we have extended the definition of general prefer-
ences to include Conditional and Ordered And preferences,
two compelling preference modes. PP does not have any
conditional constructs, nor does it provide a way of dealing
with incomparability. We have also provided a more intuitive
semantics for General And and General Or preferences. Fi-
nally, we differ significantly in our semantics, which follows.

3.2 The Semantics of our Language
We appeal to the situation calculus to define the semantics of
our preference language. Preference formulae are interpretted
as situation calculus formulae. Further, we associate a weight
with a situation term, dependent upon how greatly it deviates
from satisfying a preference formula. 0 indicates satisfaction,�

represents
�

steps away from the most preferred situation.
Weights were necessary to differentiate situations that would
be deemed “incomparable” in less expressive preference lan-
guages (e.g., [4]). Preference formulae are evaluated relative
to an action theory � . Since preference formulae may refer to
properties that hold at various situations in a situation history,
we use the notation %�� �2=������ , proposed by Gabaldon [7], to ex-
plicitly denote that % holds in the sequence of situations orig-
inating in � and terminating in � � C���� �Kq JG �IH�HIH)� 2EVr � ��	 . Recall
that fluents are represented in situation-suppressed form and
that we use the notation $	� �
� to denote the re-insertion of sit-
uation terms.

We now show how to interpret BDFs in the situation cal-
culus. If � % � , we will simply need to re-insert the situation
argument, yielding:

{ q � � � �)r C�{ q � � r
For � % � , we have nothing to do as � is already a situation

calculus formula, so:

� q � � � �)rJCH�
A BDF � � n�*������� just means that the fluent � holds in the

final situation, giving the following:

final
� {J	 q � � � �)rJC�{ q �)r

The BDF occ �P*�� tells us that the first action executed is * ,
which can be written as:

occ
� S	 q � � � �)r#Cd��� � � � � 	|b �

The boolean connectives and quantifiers are already part of
the situation calculus and so require no translation. Finally,
we are left with just the temporal connectives, which we in-
terpret in exactly the same way as in [7]:3

eventually
� }�	 q � � � �)rJC �PO � G [�� � b � G bd��	K} q � G � �)r

always
� }�	 q � � � �)r#C �`_ � G�[�� � b � G bd��	K} q � G � �)r

next
� }�	 q � � � �)r#C �PO S	 H ��� � � � � 	|b �~Y:} q ��� � � � � 	 � �)r

until
� } � ��	 q � � � �IrJC �PO � G [V� � b � G b �
	���� q � G � �)r`Y�`_ ��l#[�� � b ��l b �-G 	K} q ��l � �)r��

Since each BDF is shorthand for a situation calculus ex-
pression, a simple model-theoretic semantics follows.
Definition 4 (Basic Desire Satisfaction). Let � be an action
theory. A situation � 5�������� * * =�,O,-,`=@* 1 � =�� & � satisfies a basic
desire formula % just in the case thatLNM Cj} q � � � �)r
We define �! "�$%#� to be the weight of situation � wrt BDF % .
�! $�$%#� 5 1 if s satisfies % , otherwise �% $�$%#� 50Y .

3We use the following abbreviations:�PO � G [�� � b � G b ��	'&fC �PO � G 	��9� � b � G Y"� G b �~Y(&)��`_ � G4[�� � b �-G b ��	'&fC �`_ �-G 	�� q � � b �-G�Y"�-G b �)r�e*&)�

We can extend this definition to the more general case as
follows.

Definition 5. Let � be an action theory, and let �$� and � be
two situations such that � ��+ � . The situations beginning in
�,� and terminating in � satisfy % just in the case thatLvMCj} q � � � �Ir

We define �% '-�. ��$%#� to be the weight of the situations origi-
nating in �,� and ending in � wrt BDF % . � - . �$%#�A5 1 if % is
satisfied, otherwise � '-/. � %0�#5 Y .

Clearly Definition 4 is just a special case of Definition 5
since �! is simply short-hand for � ! /1. . In most circum-
stances, the short-hand �% notation of Definition 4 will suf-
fice, with the advantage of being easier to read and under-
stand. Consequently, we use it throughout the paper. Nev-
ertheless, in proving properties of our semantics relative to
progression, we will revert to the two-situation notation of
Definition 5.

Example 1: Consider the plan trajectory � C
��� �Kq Q)WX7���32 � � 4 7
� � Q)�
��� � Q ��:7 	#79��	 � 7��3 � Q ��:7;	J7
��	 � Q)WX7���32 � � 4 7
�)r � � � 	
and the initial database

L%4 / C
� 4 R������ � � �k��	 � 4 S�����������J3 � � �
	#�� � � ��	 � �3 �54 �96:7 � � ��	 �4 S�����������J3 � � Q ��:7;	J7
� � � � 	 � ���k�� ���8���� ���� �27 � Q ��:7
	J7
��	�� .

Then we have the following:

)5 � +X\�	�C \)5 � +=? 	�CRa)5 � +>b-	�CKa
 5 � +A@�	�CRa 5 � +=< 	�C \ 5 � +>C-	�C \
 5 � +!6 	�CRa 5 � +87-	�CRa

Definition 6 (Atomic Preference Satisfaction). Let � be a
situation and D 5 % & (% * (,-,-, (% 1 be an atomic
preference formula. Then � �;D�� 5 min 9 � G:� � % 3 � 5 1�; , if
such an

�
exists, and �% $�
D�� 5 n=<)Y otherwise.

Keeping > ! / and � as above, we evaluate our two atomic
preferences introduced earlier:

 5 � +>^-	�CR? 5 � +X\�a 	�C \
Intuitively, the weight of a situation with respect to a pref-

erence formula denotes the number of steps away from a most
preferred situation. As a consequence, given two atomic pref-
erence formulae 	 � 8 	�G and ? � 8=? G;8 H@H�H 8@?�E , satisfying 	�G in
the first formula yields the same weight as satisfying ?�G in the
second. Intuition might tell some that there should be a nor-
malization, that satisfying 	 G should have the same weight as
satisfying ?�E . This is not the intended interpretation. Atomic
preference formulae do not represent a complete ordering of
all outcomes. For instance, there may be many less preferred
	�A ’s not listed in the formula, particularly since this is first-
order. Furthermore, since preferences are qualitative, one
cannot assume that the difference in preference between 	k�
and 	 G is the same as the difference between ?
� and ? G , or any
}BA and }�ADC G .
Definition 7 (General Preference Satisfaction). Let � be a
situation and D be a general preference formula. Then �E ��;D��
is defined as follows:
 5 � } � 8 }~G 8 HmHmH 8 } E#	 is defined above

)5 ��� [���	�C
� a if 5 ��� 	�C+\

)5 � ��	 otherwise
 5 �]���	�C max � � ��	�� 5 � ��)5 � �,� _	� G _ HmHmH _	� E 	�C�
 EA� �)5 � � A 	
)5 � �,� M � G M H HmH M � E 	�C min ��)5 � � A 	 [\�� ��� � �
)5 � �,�4c�� G c HmH H c	� E 	

C
 EA� � q)5 � � A 	���� E� � A C G max � � � � 	 r
CH 5 � & � 	�� � max � � � Gi	�� H HmH � max � � �,ES	K	��

)5 � & G 	�� � max � � � l � H HmHmax � � � E 	K	�� HmHmH �
 5 � &|E2F�G)	�� max � � �,E[�� 5 � &|E[

where max ���;D�� is a syntactic notion, denoting the max-
imum possible weight D could ever assign to a situation.
(max � �;D��W5 Y if D is a BDF, max ���$% & (,�,�,�(% 1 ��5
n=< Y , etc.). A full inductive definition is found in [3].

Returning to Example 1,

�S)5 � +=?P[-+A@-	~CH)5 � +A@�	�C a
�S 5 �] +>^ 	~C max � � +>^-	�� 5 � +>^-	�C b�� ?,C \
�S 5 � +>^`_ +X\�a 	�C ?��H\ C b
�S)5 � +>^ M +X\�a-	�C min

� ��? � \1�9	�C \
�S 5 � +>^Ac +X\�a-	
C)5 � +>^-	�� max � � +X\�a 	��)5 � +X\�a 	
CR?�� @ �H\ C ^

The weight of Ordered And formulae I & VL I.* VL ,-,-,"VL Ig1 is
defined with respect to a weighted-lexicographic order. This
order first orders tuples of numbers by the sum of their ele-
ments (i.e. by �% $�;IP& L I.* L ,-,O, L Ig1)) and then applies the
traditional lexicographic ordering within each equivalence
class. The weight is then just the index in this ordering. The
full definition can be found in [3].

Definition 8 (Preferred Situations). A situation ��* is pre-
ferred to a situation �"! with respect to a preference formula
D , written # ��$��0� ��*-=�� ! =�D�� , if �! �%"�;D��'& �!)(:�
D�� . Situations
��* and � ! are indistinguishable with respect to a preference
formula D if �! �%"�;D�� 5 �8 *(�
D�� .
4 Planning with Preferences
With a preference language in hand, we return to the problem
of planning with preferences.

Definition 9 (Preference-Based Planning Problem). A
preference-based planning problem is a tuple <5�>=@?8=�D,A ,
where � is an action theory, ? is the goal, and D is a prefer-
ence formula.

Definition 9 is trivially extended to generate plans that ad-
here to hard constraints or domain knowledge D,+ (e.g., [8;
1]) by requiring that

LNM C &�- q � � � �)r additionally holds.

Definition 10 (Preferred Plan). Consider a preference-
based planning problem <5�>=@?8=�D,A and two plans V* * and V*.! .
We say that plan V*�* is preferred to plan V* ! if and only if# ��$$�0�/����� V*�*�=��"&,��=������ V* ! = �"&���=�D�� .
Definition 11 (Ideal Plan). Given a preference-based plan-
ning problem, an ideal plan is any plan V* such that
�0/212354',. ! /�6 �
D���5)1 .

Definition 12 (Optimal Plan). A plan V* is an optimal
plan with respect to a preference-based planning problem
<a�o=@?8=�D,A iff:
L M C �PO ��	 H 7 � 7�Q@R[3TVUIW`7 � ��	JY"Z � �
	kY:� Cd��� �i� � � ��	

Y � O � � H q 7 � 7�Q@R[3TVUIW`7 � � � 	kY:Z � � � 	kY"+A�97
{ � � � � � � &�	 r H
Definition 13 (p -Optimal Plan). Given a preference-based
planning problem <a�o=@?8=�D,A and a length bound p , a p -
optimal plan is any plan V*W5 * *�=�,�,�,
=)*87 where �9 p and
L M C �PO ��	 H 7 � 7�Q)R[3 VUIWX7 � ��	 Y:Z � ��	�Y"� Cd��� �i� � �k�I	

Y � O � � H q � � Cd��� �Kq U
G �IHIHIHI� U;: r � � � 	�YB6<�S�
Y87 � 7�Q@R[3TVU)WX7 � � � 	kY:Z � � � 	�Y +A� 7
{ � � � � � � &�	 r H

Definition 14 (= -Satisfactory Plan). Given a preference-
based planning problem and a quality bound = , a = -
satisfactory plan is any plan V* such that �,/21>354',. !V/ 6 �;D���9?= .
4.1 Progression
In the next section we will present an algorithm for planning
with preferences, based on forward-chaining planning. As
has been done with control knowledge containing linear tem-
poral logic formulae [1; 8], we evaluate our preference formu-
lae by progressing them as we construct our plan. Progression
takes a situation and a temporal logic formula (TLF), evalu-
ates the TLF with respect to the state of the situation and gen-
erates a new formula representing those aspects of the TLF
that remain to be satisfied in subsequent situations. In this
section, we define the notion of progression with respect to
our preference formulae and prove that the semantics of pref-
erence formulae is preserved through progression.

In order to define the progression operator, we add the
propositional constants TRUE and FALSE to both the situa-
tion calculus and to our set of BDFs, where � Q 5 TRUE and
�A@ FALSE for every action theory � . We further add the
BDF occNext

� S	 � B�"� , to capture the progression of occ
� S	 .

Definition 15 (Progression of a Basic Desire Formula). Let� be a situation, and let % be a basic desire formula. The
progression of % through � , written B �� %#� , is given by:

 If } �.t , then C:5 � }�	�C
�

TRUE if
LvMC�} q �)r

FALSE otherwise

 If } �"y , then C 5 � }�	~C
�

TRUE if
LNM Cj}

FALSE otherwise
 If }>C occ

� S	 , then C 5 � }�	�C occNext
� [If }>C occNext

� S	 , then

C 5 � }�	�C
�

TRUE if
LvMC O � � H � Cd��� � � � � 	

FALSE otherwise
 If }>C final

� ��	 , then C:5 � }�	�Cj} If }>C�� � , then C 5 � }�	�C��DC 5 � ��	 If }>Cd�|G�YB��l , then C 5 � }�	�CEC 5 � �|G@	kYFC 5 � ��l�	 If }>Cd�|G��B��l , then C 5 � }�	�CEC 5 � �|G@	k�FC 5 � ��l�	
 If }>C �PO � 	 � , then C:5 � }�	�CHG -JILK C:5 � � -5M�N 	 4
 If }>C �`_ � 	 � , then C 5 � }�	�CHO -JILK C 5 � � -5M�N 	 If }>C next

� �|	 , then C 5 � }�	�Cd� If }>C always
� ��	 , then C 5 � }�	�CPC 5 � �|	�Y"}

 If }>C eventually
� ��	 , then C:5 � }�	�CPC:5 � �|	��"}

 If }>C until
� � G � � l 	 , thenC 5 � }�	�C � C 5 � �|Gi	kY8}�	k�FC 5 � ��lI	

 If }>C TRUE or }>C FALSE, then C 5 � }�	�C�}
Returning to Example 1,

� C 5 � �9Q@Q � QIW`7��� 2 � � 4 7
�
	K	�C TRUE

� C:5 � always
� ���a3TQ 4 7����,WX7����	K	

CPC 5 � ���a3TQ 4 7����,WX7����	�Y always
� ���a3TQ 4 7����,WX7����	

C FALSE Y always
� ���a3TQ 4 7��N�,W`7����	

� C 5 �K�PO � 	 H 4 S�����������J3 � � � 	K	�C �
-JILK C 5

�54 [����������� 3K� � Q�	K	
Progression of atomic and general preference formulae is

defined in a straightforward fashion by progressing the indi-
vidual BDFs that comprise these more expressive formulae.
The full definition can be found in [3]. Note that progression
can lead to a potentially exponential increase in the size of a
BDF. In practice, we can (and do) greatly reduce the size of
progressed formulas by the use of Boolean simplification and
bounded quantification, cf. [1]. Definition 15 show us how to
progress a preference formula one step, through one situation.
We extend this to the notion of iterated progression.

Definition 16 (Iterated Progression). The iterated pro-
gression of a preference formula D through situation �Z5����� V* = � &,� , written B�� �
D�� , is defined by:

C��4 / � &�	�CPC 4 / � &�	
C�����
	 �� 5�� � &�	�CEC ����	��� 5�� � C��5 � &�	K	

Finally we prove that the progression of our preference for-
mulae preserves their semantics, i.e., that our action theory
entails a preference formula over the situation history of � iff
it entails the progressed formula up to (but not including) � .
We will exploit this in proving the correctness of our algo-
rithm in the section to follow.

Theorem 1 (Correctness of Progression). Let � C
��� �Kq G ��H)HIHI� E r � � ��	 be a situation and let % be a BDF. Then

� Q 5 %�� � &2= �
� iff � Q 5 B � - � %#�1� �2=��
�
where �X5 �����P*#1�= �,� � .

Proof Sketch: The proof proceeds by induction on the
structure of } . Refer to [3] for details.

From Theorem 1, we can prove that the weight of a sit-
uation with respect to a preference formula is equal to the
weight of the final situation, disregarding its history, with re-
spect to the progressed preference formula.

Corollary. Let �65 ������� * * =�,�,�,
=)* 1 � =�� & � be a situation and
let D be a preference formula. Then

� �;D�� 5 � . � B � - �;D����
where �X5 �����P* 1 = �,� � .
5 Computing Preferred Plans
In this section, we describe PPLAN a bounded best-first
search planner for computing preference-based plans. The

PPLAN(init, goal, pref, maxLength, desiredWt)
frontier � INITFRONTIER(init, pref)
bestPlanSoFar � []
bestWtSoFar � MAXWT(pref) �P\
while frontier �C�� and bestWtSoFar � desiredWt

current � REMOVEFIRST(frontier)
if goal u state and weight � bestWtSoFar

bestPlanSoFar � partialPlan
bestWtSoFar � weight

end if
neighbours � EXPAND(partialPlan, state, progPref)
frontier � SORTNMERGEBYVAL(neighbours, frontier)

end while
return bestPlanSoFar, bestWtSoFar

EXPAND(partialPlan, state, progPref) returns a list of new
nodes to add to the frontier. If partialPlan has length equal to
maxLength, EXPAND returns []. Otherwise, EXPAND determines
all the executable actions in state and returns a list which con-
tains, for each of these executable actions ,

(weight, newPartialPlan, newState, newProgPref).

Figure 1: The PPLAN algorithm.

PPLAN algorithm is outlined in Figure 1. The code is avail-
able at [2] and a more detailed description is in [3].

PPLAN takes as input an initial state init, a goal state goal, a
preference formula pref, a length bound on plans maxLength,
and a bound on plan weight desiredWt. The latter is a measure
of plan quality, designating the maximum weight for which
a plan is considered acceptable. The algorithm returns two
outputs: a plan bestPlanSoFar and its weight bestWtSoFar.

A naive implementation of such a planner would require
computing alternative plan trajectories and then evaluating
their relative weights. This is computationally explosive, re-
quiring computation of numerous plan trajectories, caching of
relevant trajectory state, and redundant evaluation of prefer-
ence formula weights. Instead, we make use of Theorem 1 to
compute weights as we construct plans, progressing the pref-
erence formula as we go. Exploiting progressions enables the
development of a best-first search strategy that orders search
by weight and evaluates preference formulae across shared
partial plans. Progression is commonly used to evaluate do-
main control knowledge in forward chaining planners such as
TLPlan [1] and TALPlan [8], where progression of hard con-
straints prunes the search space. In contrast, we are unable to
prune less preferred partial plans, because they may yield the
final solution, hence the need for a best-first strategy.

Returning to our algorithm in Figure 1, our plan frontier is
a list of nodes of the form [weight, partialPlan, state, pref],
sorted by weight, and then by length. The frontier is initial-
ized to the empty partial plan, its weight and pref correspond-
ing to the progression and evaluation of the preference for-
mula in the initial state. On each iteration of the while loop,
PPLAN removes the first node from the frontier and places
it in current. If the partial plan of current satisfies the goal
and has lower weight than bestWtSoFar, then bestPlanSoFar

4We assume a finite domain. 3 -5M�� denotes the result of substitut-
ing the constant Q for all instances of the variable � in 3 .

TEST # PPLAN BFS TEST # PPLAN BFS

1 6 9 13 54 87
2 13 19 14 57 90
3 6 10 15 39 102
4 6 9 16 57 90
5 34 34 17 60 42
6 48 50 18 60 42
7 8 12 19 70 87
8 57 90 20 316 FAILS
9 38 113 21 70 4806

10 47 113 22 117 FAILS
11 47 124 23 31 1698
12 55 135 24 274 FAILS

Figure 2: Nodes expanded by PPLAN & breadth-first search.

and bestWtSoFar are replaced by current’s partialPlan and
weight respectively. Next we call the function EXPAND with
current’s node arguments as input. If partialPlan has length
equal to maxLength, then the frontier is left as is. Otherwise,
EXPAND generates a new set of nodes, one for each action ex-
ecutable in state. These new nodes are sorted by weight, then
length and merged with the remainder of the frontier. We exit
the while loop when we have either reached an empty fron-
tier or we have found a plan with weight less than or equal
desiredWt. The correctness of PPLAN is given in the follow-
ing theorem.

Theorem 2 (Correctness of PPLAN Algorithm). Given
as input a preference-based planning problem <5�>=@?8=�D,A , a
length bound p , and a quality bound = , PPLAN outputs a
plan which is either p -optimal or = -satisfactory, provided
<a�o=@?8=�D,A is p -solvable, and the empty plan otherwise.

Proof Sketch: The proof proceeds by proving termination
and then proving the correct output properties by cases [3].

5.1 Experimental Results

We tested PPLAN on 24 instances of the dinner example and
31 instances of the simpler school travel example used in
[13]5. We compared the number of nodes expanded using
PPLAN’s heuristic best-first search with a breadth-first search
(BFS) algorithm. Results for the dinner example are given
in Figure 2. Our results illustrate the effectiveness of our
preference-weight heuristic in guiding search. As plans grow
in length, the efficacy of this heuristic is magnified. It’s in-
teresting to note test cases 17 and 18, where PPLAN demon-
strates poorer performance than BFS. Recall that PPLAN’s
best-first search explores plans based on weight, then length.
As a consequence, PPLAN can be led astray, investigating a
long plan with low weight, whereas the best plan can end up
being a shorter plan with higher weight. In our experience
with both domains, this behavior occurs infrequently, and
the heuristic generally leads to significantly improved perfor-
mance.

5The code, domains and test cases can be found at [2]. Unfortu-
nately, there was no way to get comparative statistics with [13].

6 Summary
In this paper we addressed the problem of preference-based
planning. We presented the syntax and semantics of an ex-
pressive first-order language for specifying domain-specific,
qualitative user preferences. This led to the development
of PPLAN a best-first search, forward-chaining planner that
computes optimal preferred plans relative to quality and
length bounds. Our planner can be modified to compute the
optimal plan without a quality bound and is trivially extended
to include hard user constraints. PPLAN is well-suited to on-
line planning and execution, a topic of future work. More
generally, our preference language is amenable to integration
with a variety of existing planners, and beyond planning, can
be used to support arbitrary dynamical reasoning tasks.

Acknowledgments
The authors gratefully acknowledge the support of the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC) Grant # 229717-04. The first author would also
like to thank NSERC for the support of a USRA.

References
[1] F. Bacchus and F. Kabanza. Using temporal logics to express

search control knowledge for planning. Artificial Intelligence,
16:123–191, 2000.

[2] M. Bienvenu and S. McIlraith. PPLAN: Code, experiments.
http://www.cs.toronto.edu/ � sheila/pplan.

[3] M. Bienvenu and S. McIlraith. Planning with preferences.
Manuscript, 2004.

[4] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole.
CP-nets: A tool for representing and reasoning about condi-
tional ceteris paribus preference statements. Journal of Artifi-
cial Intelligence Research, 21:135–191, 2004.

[5] G. Brewka. Complex preferences for answer set optimization.
In D. Dubois, C. Welty, and M. Williams, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of
the Ninth International Conference (KR2004), pages 213–223.
AAAI Press, 2004.

[6] J. Delgrande, T. Schaub, and H. Tompits. Domain-specific
preferences for causual reasoning and planning. In Proc.
KR2004, pages 673–682, 2004.

[7] A. Gabaldon. Precondition control and the progression algo-
rithm. In Proc. KR2004, pages 634–643, 2004.

[8] J. Kvarnström and P. Doherty. TALplanner: A temporal logic
based forward chaining planner. Annals of Mathematics and
Artificial Intelligence, 30:119–169, 2000.

[9] K. Myers and T. Lee. Generating qualitatively different plans
through metatheoretic biases. In Proc. AAAI’99, pages 570–
576, 1999.

[10] M. Puterman. Markov Decision Processes: Discrete Dynamic
Programming. Wiley, New York, 1994.

[11] R. Reiter. Knowledge in Action: Logical Foundations for Spec-
ifying and Implementing Dynamical Systems. 2001.

[12] F. Rossi, K. Venable, and N. Yorke-Smith. Temporal reasoning
with preferences and uncertainty. In Proc. IJCAI-03, 2003.

[13] T. Son and E. Pontelli. Planning with preferences using logic
programming. In Proc. LPNMR 2004, pages 247–260. 2004.

